ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Interaction Quality Estimation with BiLSTMs and the Impact on Dialogue Policy Learning

166   0   0.0 ( 0 )
 نشر من قبل Stefan Ultes
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Stefan Ultes




اسأل ChatGPT حول البحث

Learning suitable and well-performing dialogue behaviour in statistical spoken dialogue systems has been in the focus of research for many years. While most work which is based on reinforcement learning employs an objective measure like task success for modelling the reward signal, we use a reward based on user satisfaction estimation. We propose a novel estimator and show that it outperforms all previous estimators while learning temporal dependencies implicitly. Furthermore, we apply this novel user satisfaction estimation model live in simulated experiments where the satisfaction estimation model is trained on one domain and applied in many other domains which cover a similar task. We show that applying this model results in higher estimated satisfaction, similar task success rates and a higher robustness to noise.



قيم البحث

اقرأ أيضاً

Dialogue policy learning based on reinforcement learning is difficult to be applied to real users to train dialogue agents from scratch because of the high cost. User simulators, which choose random user goals for the dialogue agent to train on, have been considered as an affordable substitute for real users. However, this random sampling method ignores the law of human learning, making the learned dialogue policy inefficient and unstable. We propose a novel framework, Automatic Curriculum Learning-based Deep Q-Network (ACL-DQN), which replaces the traditional random sampling method with a teacher policy model to realize the dialogue policy for automatic curriculum learning. The teacher model arranges a meaningful ordered curriculum and automatically adjusts it by monitoring the learning progress of the dialogue agent and the over-repetition penalty without any requirement of prior knowledge. The learning progress of the dialogue agent reflects the relationship between the dialogue agents ability and the sampled goals difficulty for sample efficiency. The over-repetition penalty guarantees the sampled diversity. Experiments show that the ACL-DQN significantly improves the effectiveness and stability of dialogue tasks with a statistically significant margin. Furthermore, the framework can be further improved by equipping with different curriculum schedules, which demonstrates that the framework has strong generalizability.
In this paper, we propose to use deep policy networks which are trained with an advantage actor-critic method for statistically optimised dialogue systems. First, we show that, on summary state and action spaces, deep Reinforcement Learning (RL) outp erforms Gaussian Processes methods. Summary state and action spaces lead to good performance but require pre-engineering effort, RL knowledge, and domain expertise. In order to remove the need to define such summary spaces, we show that deep RL can also be trained efficiently on the original state and action spaces. Dialogue systems based on partially observable Markov decision processes are known to require many dialogues to train, which makes them unappealing for practical deployment. We show that a deep RL method based on an actor-critic architecture can exploit a small amount of data very efficiently. Indeed, with only a few hundred dialogues collected with a handcrafted policy, the actor-critic deep learner is considerably bootstrapped from a combination of supervised and batch RL. In addition, convergence to an optimal policy is significantly sped up compared to other deep RL methods initialized on the data with batch RL. All experiments are performed on a restaurant domain derived from the Dialogue State Tracking Challenge 2 (DSTC2) dataset.
Building user trust in dialogue agents requires smooth and consistent dialogue exchanges. However, agents can easily lose conversational context and generate irrelevant utterances. These situations are called dialogue breakdown, where agent utterance s prevent users from continuing the conversation. Building systems to detect dialogue breakdown allows agents to recover appropriately or avoid breakdown entirely. In this paper we investigate the use of semi-supervised learning methods to improve dialogue breakdown detection, including continued pre-training on the Reddit dataset and a manifold-based data augmentation method. We demonstrate the effectiveness of these methods on the Dialogue Breakdown Detection Challenge (DBDC) English shared task. Our submissions to the 2020 DBDC5 shared task place first, beating baselines and other submissions by over 12% accuracy. In ablations on DBDC4 data from 2019, our semi-supervised learning methods improve the performance of a baseline BERT model by 2% accuracy. These methods are applicable generally to any dialogue task and provide a simple way to improve model performance.
Most existing approaches for goal-oriented dialogue policy learning used reinforcement learning, which focuses on the target agent policy and simply treat the opposite agent policy as part of the environment. While in real-world scenarios, the behavi or of an opposite agent often exhibits certain patterns or underlies hidden policies, which can be inferred and utilized by the target agent to facilitate its own decision making. This strategy is common in human mental simulation by first imaging a specific action and the probable results before really acting it. We therefore propose an opposite behavior aware framework for policy learning in goal-oriented dialogues. We estimate the opposite agents policy from its behavior and use this estimation to improve the target agent by regarding it as part of the target policy. We evaluate our model on both cooperative and competitive dialogue tasks, showing superior performance over state-of-the-art baselines.
User Simulators are one of the major tools that enable offline training of task-oriented dialogue systems. For this task the Agenda-Based User Simulator (ABUS) is often used. The ABUS is based on hand-crafted rules and its output is in semantic form. Issues arise from both properties such as limited diversity and the inability to interface a text-level belief tracker. This paper introduces the Neural User Simulator (NUS) whose behaviour is learned from a corpus and which generates natural language, hence needing a less labelled dataset than simulators generating a semantic output. In comparison to much of the past work on this topic, which evaluates user simulators on corpus-based metrics, we use the NUS to train the policy of a reinforcement learning based Spoken Dialogue System. The NUS is compared to the ABUS by evaluating the policies that were trained using the simulators. Cross-model evaluation is performed i.e. training on one simulator and testing on the other. Furthermore, the trained policies are tested on real users. In both evaluation tasks the NUS outperformed the ABUS.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا