ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-Wavelength Lasing in Quantum-Dot Plasmonic Lattice Lasers

111   0   0.0 ( 0 )
 نشر من قبل Jan Manuel Winkler
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Arrays of metallic particles patterned on a substrate have emerged as a promising design for on-chip plasmonic lasers. In past examples of such devices, the periodic particles provided feedback at a single resonance wavelength, and organic dye molecules were used as the gain material. Here, we introduce a flexible template-based fabrication method that allows a broader design space for Ag particle-array lasers. Instead of dye molecules, we integrate colloidal quantum dots (QDs), which offer better photostability and wavelength tunability. Our fabrication approach also allows us to easily adjust the refractive index of the substrate and the QD-film thickness. Exploiting these capabilities, we demonstrate not only single-wavelength lasing but dual-wavelength lasing via two distinct strategies. First, by using particle arrays with rectangular lattice symmetries, we obtain feedback from two orthogonal directions. The two output wavelengths from this laser can be selected individually using a linear polarizer. Second, by adjusting the QD-film thickness, we use higher-order transverse waveguide modes in the QD film to obtain dual-wavelength lasing at normal and off-normal angles from a symmetric square array. We thus show that our approach offers various design possibilities to tune the laser output.



قيم البحث

اقرأ أيضاً

Bound states in the continuum (BICs) have attracted much attention in recent years due to the infinite quality factor (Q-factor) resonance and extremely localized field. In this study, BICs have been demonstrated by dielectric metasurfaces with hybri d surface lattice resonance (SLR) in the experiment. By breaking the symmetry of geometry, SLR can be easily switched between BICs and quasi-BICs. Comparing with literature, switching between BICs and quasi-BICs is usually accompanied by wavelength shift. Here, a design rule is proposed to prevent the wavelength shift when the Q-factor is changing. Also, such a design also makes subsequent identification of the laser threshold more credible. Due to the high Q-factor, low threshold laser is one of the intuitive applications of BICs. Utilize the high localized ability of BICs, low threshold BICs laser can be achieved by the dielectric metasurface immersed with Rhodamine 6G. Interestingly, due to the high Q-factor resonance of BICs, the laser signals and images can be observed in almost transparent samples. Not only the BICs laser is demonstrated in the experiment, but also the mechanism of BICs is deeply analyzed. This study can help readers better understand this novel feature of BICs, and provide the way for engineer BICs metasurfaces. The device can provide various applications, including laser, optical sensing, non-linear optics enhancement, and single-photon source.
We report a 48-channel 100-GHz tunable laser near 1550 nm by integrating 16 DFB lasers. High wavelength-spacing uniformity is guaranteed by the reconstruction-equivalent-chirp technique, which enables a temperature tuning range below 20 Celsius degree.
We demonstrate a quantum dot single photon source at 900 nm triggered at 300 MHz by a continuous wave telecommunications wavelength laser followed by an electro-optic modulator. The quantum dot is excited by on-chip-generated second harmonic radiatio n, resonantly enhanced by a GaAs photonic crystal cavity surrounding the InAs quantum dot. Our result suggests a path toward the realization of telecommunications-wavelength-compatible quantum dot single photon sources with speeds exceeding 1 GHz.
372 - H. A. M. Leymann 2013
We investigate correlations between orthogonally polarized cavity modes of a bimodal micropillar laser with a single layer of self-assembled quantum dots in the active region. While one emission mode of the microlaser demonstrates a characteristic s- shaped input-output curve, the output intensity of the second mode saturates and even decreases with increasing injection current above threshold. Measuring the photon auto-correlation function g^{(2)}(tau) of the light emission confirms the onset of lasing in the first mode with g^{(2)}(0) approaching unity above threshold. In contrast, strong photon bunching associated with super-thermal values of g^{(2)}(0) is detected for the other mode for currents above threshold. This behavior is attributed to gain competition of the two modes induced by the common gain material, which is confirmed by photon crosscorrelation measurements revealing a clear anti-correlation between emission events of the two modes. The experimental studies are in excellent qualitative agreement with theoretical studies based on a microscopic semiconductor theory, which we extend to the case of two modes interacting with the common gain medium. Moreover, we treat the problem by an extended birth-death model for two interacting modes, which reveals, that the photon probability distribution of each mode has a double peak structure, indicating switching behavior of the modes for the pump rates around threshold.
In this article, a chiral plasmonic hydrogen-sensing platform using palladium-based nanohelices is demonstrated. Such 3D chiral nanostructures fabricated by nanoglancing angle deposition exhibit strong circular dichroism both experimentally and theor etically. The chiroptical properties of the palladium nanohelices are altered upon hydrogen uptake and sensitively depend on the hydrogen concentration. Such properties are well suited for remote and spark-free hydrogen sensing in the flammable range. Hysteresis is reduced, when an increasing amount of gold is utilized in the palladium-gold hybrid helices. As a result, the linearity of the circular dichroism in response to hydrogen is significantly improved. The chiral plasmonic sensor scheme is of potential interest for hydrogen-sensing applications, where good linearity and high sensitivity are required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا