ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of a companion and of chromospheric emission on the shape of chromosome maps for globular clusters

335   0   0.0 ( 0 )
 نشر من قبل Fabrice Martins
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the role of binaries and chromospheric emission on HST photometry of globular clusters stars. We quantify their respective effects on the position of stars in the chromosome map, especially among the first population. We computed atmosphere models and synthetic spectra for stars of different chemical compositions, based on isochrones produced by stellar evolution calculations with abundance variations representative of first and second populations in GCs. From this we built synthetic chromosome maps for a mixture of stars of different chemical compositions. We subsequently replaced a fraction of stars with binaries, or stars with chromospheric emission, using synthetic spectroscopy. We studied how the position of stars is affected in the chromosome map. Binaries can, in principle, explain the extension of the first population in the chromosome map. However, we find that given the binary fraction reported for GCs, the density of stars in the extended part is too small. Another difficulty of the binary explanation is that the shape of the distribution of the first population in the chromosome map is different in clusters with similar binary fractions. Additionally, we find that the contribution of chromospheric emission lines to the HST photometry is too small to have an observable impact on the shape of the chromosome map. Continuum chromospheric emission has an effect qualitatively similar to binaries. We conclude that binaries do have an impact on the morphology of the chromosome map of GCs, but they are unlikely to explain entirely the shape of the extended distribution of the first population stars. Uncertainties in the properties of continuum chromospheric emission of stars in GCs prevent any quantitative conclusion. Therefore, the origin of the extended first population remains unexplained.



قيم البحث

اقرأ أيضاً

The HST UV Survey of Globular Clusters (GCs) has investigated GCs and their stellar populations. In previous papers of this series we have introduced a pseudo two-color diagram, chromosome map (ChM), that maximises the separation between the multiple populations. We have identified two main classes of GCs: Type I (~83% of the objects) and Type II, both hosting two main groups of stars, referred to in this series as first (1G) and second generation (2G). Type II clusters exhibit two or more parallel sequences of 1G and 2G stars in their ChMs. We exploit elemental abundances from literature to assign the chemical composition to the distinct populations as identified on the ChMs of 29 GCs. We find that stars in different regions of the ChM have different composition: 1G stars share the same light-element content as field stars, while 2G stars are enhanced in N, Na and depleted in O. Stars enhanced in Al and depleted in Mg populate the extreme regions of the ChM. We investigate the color spread among 1G stars observed in many GCs, and find no evidence for variations in light elements, whereas either a 0.1 dex Fe spread or a variation in He remain to be verified. In the attempt of analysing the global properties of the multiple populations, we have constructed a universal ChM, which highlights that, though variegate, the phenomenon has some common pattern. The universal ChM reveals a tight connection with Na, for which we have provided an empirical relation. The additional ChM sequences typical of Type II GCs are enhanced in metallicity and, often, in s elements. Omega Cen can be classified as an extreme Type II GC, with a ChM displaying three main streams, each with its own variations in chemical abundances. One of the most noticeable differences is between the lower and upper streams, with the latter (associated with higher He) having higher Fe and lower Li. We publicly release ChMs.
Recent studies have revealed that the Multiple Populations (MPs) phenomenon does not occur only in ancient and massive Galactic globular clusters (GCs), but it is also observed in external galaxies, where GCs sample a wide age range with respect to t he Milky Way. However, for a long time, it was unclear whether we were looking at the same phenomenon in different environments or not. The first evidence that the MPs phenomenon is the same regardless of cluster age and host galaxy came out recently when an intermediate-age cluster from the Small Magellanic Cloud, Lindsay 1, and a Galactic GC have been directly compared. By complementing those data with new images from the Hubble Space Telescope (HST), we extend the comparison to two clusters of different ages: NGC 2121 ($sim$2.5Gyr) and NGC 1783 ($sim$1.5Gyr), from the Large Magellanic Cloud. We find a clear correlation between the RGB width in the pseudo-colour $C_{F275W,F343N,F438W}$ and the age of the cluster itself, with the older cluster having larger $sigma(C_{F275W,F343N,F438W})^{RGB}$ and vice-versa. Unfortunately, the $sigma$ values cannot be directly linked to the N-abundance variations within the clusters before properly taking account the effect of the first dredge-up. Such HST data also allow us to explore whether multiple star-formation episodes occurred within NGC 2121. The two populations are indistinguishable, with an age difference of only 6$pm$12 Myr and an initial Helium spread of 0.02 or lower. This confirms our previous results, putting serious constraints on any model proposed to explain the origin of the chemical anomalies in GCs.
We present the result of our investigation on the impact of the low Solar abundance of Asplund and collaborators (2004) on the derived ages for the oldest star clusters based on isochrone fittings. We have constructed new stellar models and correspon ding isochrones using this new solar mixture with a proper Solar calibration. We have found that the use of the Asplund et al. (2004) metallicity causes the typical ages for old globular clusters in the Milky Way to be increased roughly by 10%. Although this may appear small, it has a significant impact on the interpretation for the formation epoch of Milky Way globular clusters. The Asplund et al. (2004) abundance may not necessarily threaten the current concordance cosmology but would suggest that Milky Way globular clusters formed before the reionization and before the main galaxy body starts to build up. This is in contrast to the current understanding on the galaxy formation.
We use Hubble Space Telescope (HST) imaging from the ACS Treasury Survey to determine fits for single population isochrones of 69 Galactic globular clusters. Using robust Bayesian analysis techniques, we simultaneously determine ages, distances, abso rptions, and helium values for each cluster under the scenario of a single stellar population on model grids with solar ratio heavy element abundances. The set of cluster parameters is determined in a consistent and reproducible manner for all clusters using the Bayesian analysis suite BASE-9. Our results are used to re-visit the age-metallicity relation. We find correlations with helium and several other parameters such as metallicity, binary fraction, and proxies for cluster mass. The helium abundances of the clusters are also considered in the context of CNO abundances and the multiple population scenario.
We analysed red giant branch stars in 16 Galactic globular clusters, computing their atmospheric parameters both from the photometry and from excitation and ionisation balances. The spectroscopic parameters are lower than the photometric ones and thi s discrepancy increases decreasing the metallicity, reaching, at [Fe/H]~-2.5 dex, differences of ~350 K in effective temperature and ~1 dex in surface gravity. We demonstrate that the spectroscopic parameters are inconsistent with the position of the stars in the colour-magnitude diagram, providing too low temperatures and gravities, and predicting that the stars are up to about 2.5 magnitudes brighter than the observed magnitudes. The parameter discrepancy is likely due to the inadequacies of the adopted physics, in particular the assumption of 1-dimensional geometry can be the origin of the observed slope between iron abundances and excitation potential that leads to low temperatures. However, the current modelling of 3D/NLTE radiative transfer for giant stars seems to be not able to totally erase this slope. We conclude that the spectroscopic parameters are wrong for metallicity lower than -1.5 dex and for these red giant stars photometric temperatures and gravities should be adopted. We provide a simple relation to correct the spectroscopic temperatures in order to put them onto a photometric scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا