ترغب بنشر مسار تعليمي؟ اضغط هنا

Self Organization Agent Oriented Dynamic Resource Allocation on Open Federated Clouds Environment

321   0   0.0 ( 0 )
 نشر من قبل Mahieddine Djoudi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To ensure uninterrupted services to the cloud clients from federated cloud providers, it is important to guarantee an efficient allocation of the cloud resources to users to improve the rate of client satisfaction and the quality of the service provisions. It is better to get as more computing and storage resources as possible. In cloud domain several Multi Agent Resource Allocation methods have been proposed to implement the problem of dynamic resource allocation. However the problem is still open and many works to do in this field. In cloud computing robustness is important so in this paper we focus on auto-adaptive method to deal with changes of open federated cloud computing environment. Our approach is hybrid, we first adopt an existing organizations optimization approach for self organization in broker agent organization to combine it with already existing Multi Agent Resource Allocation approach on Federated Clouds. We consider an open clouds federation environment which is dynamic and in constant evolution, new cloud operators can join the federation or leave this one. At the same time our approach is multi criterion which can take in account various parameters (i.e. computing load balance of mediator agent, geographical distance (network delay) between costumer and provider...).



قيم البحث

اقرأ أيضاً

100 - Xiumei Deng , Jun Li , Chuan Ma 2021
Blockchain assisted federated learning (BFL) has been intensively studied as a promising technology to process data at the network edge in a distributed manner. In this paper, we focus on BFL over wireless environments with varying channels and energ y harvesting at clients. We are interested in proposing dynamic resource allocation (i.e., transmit power, computation frequency for model training and block mining for each client) and client scheduling (DRACS) to maximize the long-term time average (LTA) training data size with an LTA energy consumption constraint. Specifically, we first define the Lyapunov drift by converting the LTA energy consumption to a queue stability constraint. Then, we construct a Lyapunov drift-plus-penalty ratio function to decouple the original stochastic problem into multiple deterministic optimizations along the time line. Our construction is capable of dealing with uneven durations of communication rounds. To make the one-shot deterministic optimization problem of combinatorial fractional form tractable, we next convert the fractional problem into a subtractive-form one by Dinkelbach method, which leads to the asymptotically optimal solution in an iterative way. In addition, the closed-form of the optimal resource allocation and client scheduling is obtained in each iteration with a low complexity. Furthermore, we conduct the performance analysis for the proposed algorithm, and discover that the LTA training data size and energy consumption obey an [$mathcal{O}(1/V)$, $mathcal{O}(sqrt{V})$] trade-off. Our experimental results show that the proposed algorithm can provide both higher learning accuracy and faster convergence with limited time and energy consumption based on the MNIST and Fashion-MNIST datasets.
With the development of federated learning (FL), mobile devices (MDs) are able to train their local models with private data and sends them to a central server for aggregation, thereby preventing sensitive raw data leakage. In this paper, we aim to i mprove the training performance of FL systems in the context of wireless channels and stochastic energy arrivals of MDs. To this purpose, we dynamically optimize MDs transmission power and training task scheduling. We first model this dynamic programming problem as a constrained Markov decision process (CMDP). Due to high dimensions rooted from our CMDP problem, we propose online stochastic learning methods to simplify the CMDP and design online algorithms to obtain an efficient policy for all MDs. Since there are long-term constraints in our CMDP, we utilize Lagrange multipliers approach to tackle this issue. Furthermore, we prove the convergence of the proposed online stochastic learning algorithm. Numerical results indicate that the proposed algorithms can achieve better performance than the benchmark algorithms.
In Wolke et al. [1] we compare the efficiency of different resource allocation strategies experimentally. We focused on dynamic environments where virtual machines need to be allocated and deallocated to servers over time. In this companion paper, we describe the simulation framework and how to run simulations to replicate experiments or run new experiments within the framework.
This paper aims at providing a rigorous definition of self- organization, one of the most desired properties for dynamic systems (e.g., peer-to-peer systems, sensor networks, cooperative robotics, or ad-hoc networks). We characterize different classe s of self-organization through liveness and safety properties that both capture information re- garding the system entropy. We illustrate these classes through study cases. The first ones are two representative P2P overlays (CAN and Pas- try) and the others are specific implementations of Omega (the leader oracle) and one-shot query abstractions for dynamic settings. Our study aims at understanding the limits and respective power of existing self-organized protocols and lays the basis of designing robust algorithm for dynamic systems.
As a promising solution to achieve efficient learning among isolated data owners and solve data privacy issues, federated learning is receiving wide attention. Using the edge server as an intermediary can effectively collect sensor data, perform loca l model training, and upload model parameters for global aggregation. So this paper proposes a new framework for resource allocation in a hierarchical network supported by edge computing. In this framework, we minimize the weighted sum of system cost and learning cost by optimizing bandwidth, computing frequency, power allocation and subcarrier assignment. To solve this challenging mixed-integer non-linear problem, we first decouple the bandwidth optimization problem(P1) from the whole problem and obtain a closed-form solution. The remaining computational frequency, power, and subcarrier joint optimization problem(P2) can be further decomposed into two sub-problems: latency and computational frequency optimization problem(P3) and transmission power and subcarrier optimization problem(P4). P3 is a convex optimization problem that is easy to solve. In the joint optimization problem(P4), the optimal power under each subcarrier selection can be obtained first through the successive convex approximation(SCA) algorithm. Substituting the optimal power value obtained back to P4, the subproblem can be regarded as an assignment problem, so the Hungarian algorithm can be effectively used to solve it. The solution of problem P2 is accomplished by solving P3 and P4 iteratively. To verify the performance of the algorithm, we compare the proposed algorithm with five algorithms; namely Equal bandwidth allocation, Learning cost guaranteed, Greedy subcarrier allocation, System cost guaranteed and Time-biased algorithm. Numerical results show the significant performance gain and the robustness of the proposed algorithm in the face of parameter changes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا