ﻻ يوجد ملخص باللغة العربية
We report on the study of the impact of the finite resolution of the chirp rate applied on the frequency difference between the Raman lasers beamsplitters onto the phase of a free fall atom gravimeter. This chirp induces a phase shift that compensates the one due to gravity acceleration, allowing for its precise determination in terms of frequencies. In practice, it is most often generated by a direct digital synthesizer (DDS). Besides the effect of eventual truncation errors, we evaluate here the bias on the g measurement due to the finite time and frequency resolution of the chirp generated by the DDS, and show that it can compromise the measurement accuracy. However, this effect can be mitigated by an adequate choice of the DDS chirp parameters resulting from a trade-off between interferometer phase resolution and induced bias.
Electron-impact direct double ionization (DDI) process is studied as a sequence of two and three step processes. Contribution from ionization-ionization, ionization-excitation-ionization, and excitation-ionization-ionization processes is taken into a
This work establishes a high-precision relativistic theoretical model: start from studying finite speed of light effect based on a coordinate transformation, and further extend the research methods to analyze the overall relativistic effects. This mo
We study the influence of off-resonant two photon transitions on high precision measurements with atom interferometers based on stimulated Raman transitions. These resonances induce a two photon light shift on the resonant Raman condition. The impact
The electron impact ionization of atomic hydrogen is calculated for incident elrctron energy 76.46 eV. The Hartree-Fock approximation is used to calculate the initial state which includes both bound and continum wave functions. The final state contin
We present a novel approach to precisely synthesize arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizati