ﻻ يوجد ملخص باللغة العربية
The squeezed states of light become more and more important in the fields of quantum enhanced precision measurement and quantum information. To get this vital continuous variable quantum resource, the generation of squeezed states of light becomes a key factor. In this paper, a compact telecom fiber-based bright squeezed light (BSL) generator is demonstrated. To our knowledge, this is the first time that BSL has been reported in a fiber-based system to date. To obtain the BSL, a double-pass parametric amplifier based on surface-coated lithium niobate waveguide is employed. When the 1550 nm seed laser of the parametric amplifier is blocked, a stable 1.85 dB squeezed vacuum is obtained. With injected seed power of 80 {mu}W, an output power of 18 {mu}W and a squeezing value of 1.04 dB are achieved of the BSL at 1550 nm. Due to the good mode matching in the fiber and the absence of the resonant cavity, this flexible and compact BSL generator has the potential to be useful in out-of-the-laboratory quantum technologies. Moreover, the BSL has a narrow spectral width of 30 kHz, which is inherited from a narrow-linewidth single-frequency seed laser. In addition to being free from the wavelength-dependent losses, the narrowband BSL is also beneficial to improve the signal-to-noise ratio of quantum-enhanced precision measurement.
The standard process for the production of strongly squeezed states of light is optical parametric amplification (OPA) below threshold in dielectric media such as LiNbO3 or periodically poled KTP. Here, we present a graphical description of squeezed
We reconstruct the polarization sector of a bright polarization squeezed beam starting from a complete set of Stokes measurements. Given the symmetry that underlies the polarization structure of quantum fields, we use the unique SU(2) Wigner distribu
Squeezed states of light have found their way into a number of applications in quantum-enhanced metrology due to their reduced noise properties. In order to extend such an enhancement to metrology experiments based on atomic ensembles, an efficient l
In parametric systems, squeezed states of radiation can be generated via extra work done by external sources. This eventually increases the entropy of the system despite the fact that squeezing is reversible. We investigate the entropy increase due t
In order to implement fault-tolerant quantum computation, entanglement generation with low error probability and high success probability is required. We have proposed the use of squeezed coherent light as a probe to generate entanglement between two