ترغب بنشر مسار تعليمي؟ اضغط هنا

Fiber-based narrowband bright squeezed light generation by double-pass parametric amplification

112   0   0.0 ( 0 )
 نشر من قبل Tianyi Tan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The squeezed states of light become more and more important in the fields of quantum enhanced precision measurement and quantum information. To get this vital continuous variable quantum resource, the generation of squeezed states of light becomes a key factor. In this paper, a compact telecom fiber-based bright squeezed light (BSL) generator is demonstrated. To our knowledge, this is the first time that BSL has been reported in a fiber-based system to date. To obtain the BSL, a double-pass parametric amplifier based on surface-coated lithium niobate waveguide is employed. When the 1550 nm seed laser of the parametric amplifier is blocked, a stable 1.85 dB squeezed vacuum is obtained. With injected seed power of 80 {mu}W, an output power of 18 {mu}W and a squeezing value of 1.04 dB are achieved of the BSL at 1550 nm. Due to the good mode matching in the fiber and the absence of the resonant cavity, this flexible and compact BSL generator has the potential to be useful in out-of-the-laboratory quantum technologies. Moreover, the BSL has a narrow spectral width of 30 kHz, which is inherited from a narrow-linewidth single-frequency seed laser. In addition to being free from the wavelength-dependent losses, the narrowband BSL is also beneficial to improve the signal-to-noise ratio of quantum-enhanced precision measurement.



قيم البحث

اقرأ أيضاً

The standard process for the production of strongly squeezed states of light is optical parametric amplification (OPA) below threshold in dielectric media such as LiNbO3 or periodically poled KTP. Here, we present a graphical description of squeezed light generation via OPA. It visualizes the interaction between the nonlinear dielectric polarization of the medium and the electromagnetic quantum field. We explicitly focus on the transfer from the fields ground state to a squeezed vacuum state and from a coherent state to a bright squeezed state by the mediums secondorder nonlinearity, respectively. Our pictures visualize the phase dependent amplification and deamplification of quantum uncertainties and give the phase relations between all propagating electro-magnetic fields as well as the internally induced dielectric polarizations. The graphical description can also be used to describe the generation of nonclassical states of light via higherorder effects of the non-linear dielectric polarization such as four-wave mixing and the optical Kerr effect.
We reconstruct the polarization sector of a bright polarization squeezed beam starting from a complete set of Stokes measurements. Given the symmetry that underlies the polarization structure of quantum fields, we use the unique SU(2) Wigner distribu tion to represent states. In the limit of localized and bright states, the Wigner function can be approximated by an inverse three-dimensional Radon transform. We compare this direct reconstruction with the results of a maximum likelihood estimation, finding an excellent agreement.
Squeezed states of light have found their way into a number of applications in quantum-enhanced metrology due to their reduced noise properties. In order to extend such an enhancement to metrology experiments based on atomic ensembles, an efficient l ight-atom interaction is required. Thus, there is a particular interest in generating narrow-band squeezed light that is on atomic resonance. This will make it possible not only to enhance the sensitivity of atomic based sensors, but also to deterministically entangle two distant atomic ensembles. We generate bright two-mode squeezed states of light, or twin beams, with a non-degenerate four-wave mixing (FWM) process in hot $^{85}$Rb in a double-lambda configuration. Given the proximity of the energy levels in the D1 line of $^{85}$Rb and $^{87}$Rb, we are able to operate the FWM in $^{85}$Rb in a regime that generates two-mode squeezed states in which both modes are simultaneously on resonance with transitions in the D1 line of $^{87}$Rb, one mode with the $F=2$ to $F=2$ transition and the other one with the $F=1$ to $F=1$ transition. For this configuration, we obtain an intensity difference squeezing level of $-3.5$ dB. Moreover, the intensity difference squeezing increases to $-5.4$ dB and $-5.0$ dB when only one of the modes of the squeezed state is resonant with the D1 $F=2$ to $F=2$ or $F=1$ to $F=1$ transition of $^{87}$Rb, respectively.
193 - A.M. Zagoskin , E. Ilichev , 2012
In parametric systems, squeezed states of radiation can be generated via extra work done by external sources. This eventually increases the entropy of the system despite the fact that squeezing is reversible. We investigate the entropy increase due t o squeezing and show that it is quadratic in the squeezing rate and may become important in the repeated operation of tunable oscillators (quantum buses) used to connect qubits in various proposed schemes for quantum computing.
In order to implement fault-tolerant quantum computation, entanglement generation with low error probability and high success probability is required. We have proposed the use of squeezed coherent light as a probe to generate entanglement between two atoms by communication, and shown that the error probability is reduced well below the threshold of fault-tolerant quantum computation [Phys. Rev. A. {bf 88}, 022313 (2013)]. Here, we investigate the effect of photon loss mainly due to finite coupling efficiency to the cavity. The error probability with the photon loss is calculated by the beam-splitter model for homodyne measurement on probe light. Optimum condition on the amplitude of probe light to minimize the error probability is examined. It is shown that the phase-squeezed probe light yields lower error probability than coherent-light probe. A fault-tolerant quantum computation algorithm can be implemented under 0.59 dB loss by concatenating five-qubit error correction code.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا