ترغب بنشر مسار تعليمي؟ اضغط هنا

False Data Injection Attacks on Hybrid AC/HVDC Interconnected System with Virtual Inertia -- Vulnerability, Impact and Detection

91   0   0.0 ( 0 )
 نشر من قبل Kaikai Pan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Power systems are moving towards hybrid AC/DC grids with the integration of HVDC links, renewable resources and energy storage modules. New models of frequency control have to consider the complex interactions between these components. Meanwhile, more attention should be paid to cyber security concerns as these control strategies highly depend on data communications which may be exposed to cyber attacks. In this regard, this article aims to analyze the false data injection (FDI) attacks on the AC/DC interconnected system with virtual inertia and develop advanced diagnosis tools to reveal their occurrence. We build an optimization-based framework for the purpose of vulnerability and attack impact analysis. Considering the attack impact on the system frequency stability, it is shown that the hybrid grid with parallel AC/DC links and emulated inertia is more vulnerable to the FDI attacks, compared with the one without virtual inertia and the normal AC system. We then propose a detection approach to detect and isolate each FDI intrusion with a sufficient fast response, and even recover the attack value. In addition to theoretical results, the effectiveness of the proposed methods is validated through simulations on the two-area AC/DC interconnected system with virtual inertia emulation capabilities.



قيم البحث

اقرأ أيضاً

An unobservable false data injection (FDI) attack on AC state estimation (SE) is introduced and its consequences on the physical system are studied. With a focus on understanding the physical consequences of FDI attacks, a bi-level optimization probl em is introduced whose objective is to maximize the physical line flows subsequent to an FDI attack on DC SE. The maximization is subject to constraints on both attacker resources (size of attack) and attack detection (limiting load shifts) as well as those required by DC optimal power flow (OPF) following SE. The resulting attacks are tested on a more realistic non-linear system model using AC state estimation and ACOPF, and it is shown that, with an appropriately chosen sub-network, the attacker can overload transmission lines with moderate shifts of load.
State estimation is of considerable significance for the power system operation and control. However, well-designed false data injection attacks can utilize blind spots in conventional residual-based bad data detection methods to manipulate measureme nts in a coordinated manner and thus affect the secure operation and economic dispatch of grids. In this paper, we propose a detection approach based on an autoencoder neural network. By training the network on the dependencies intrinsic in normal operation data, it effectively overcomes the challenge of unbalanced training data that is inherent in power system attack detection. To evaluate the detection performance of the proposed mechanism, we conduct a series of experiments on the IEEE 118-bus power system. The experiments demonstrate that the proposed autoencoder detector displays robust detection performance under a variety of attack scenarios.
State estimation is a data processing algorithm for converting redundant meter measurements and other information into an estimate of the state of a power system. Relying heavily on meter measurements, state estimation has proven to be vulnerable to cyber attacks. In this paper, a novel targeted false data injection attack (FDIA) model against AC state estimation is proposed. Leveraging on the intrinsic load dynamics in ambient conditions and important properties of the Ornstein-Uhlenbeck process, we, from the viewpoint of intruders, design an algorithm to extract power network parameters purely from PMU data, which are further used to construct the FDIA vector. Requiring no network parameters and relying only on limited phasor measurement unit (PMU) data, the proposed FDIA model can target specific states and launch large deviation attacks. Sufficient conditions for the proposed FDIA model are also developed. Various attack vectors and attacking regions are studied in the IEEE 39-bus system, showing that the proposed FDIA method can successfully bypass the bad data detection and launch targeted large deviation attacks with very high probabilities.
The security of energy supply in a power grid critically depends on the ability to accurately estimate the state of the system. However, manipulated power flow measurements can potentially hide overloads and bypass the bad data detection scheme to in terfere the validity of estimated states. In this paper, we use an autoencoder neural network to detect anomalous system states and investigate the impact of hyperparameters on the detection performance for false data injection attacks that target power flows. Experimental results on the IEEE 118 bus system indicate that the proposed mechanism has the ability to achieve satisfactory learning efficiency and detection accuracy.
We study the security threats of power system operation brought by a class of data injection attacks upon load forecasting algorithms. In particular, with minimal assumptions on the knowledge and ability of the attacker, we design attack data on inpu t features for load forecasting algorithms in a black-box approach. System operators can be oblivious of such wrong load forecasts, which lead to uneconomical or even insecure decisions in commitment and dispatch. This paper is the first attempt to bring up the security issues of load forecasting algorithms to our knowledge, and show that accurate load forecasting algorithm is not necessarily robust to malicious attacks. More severely, attackers are able to design targeted attacks on system operations strategically with additional topology information. We demonstrate the impact of load forecasting attacks on two IEEE test cases. We show our attack strategy is able to cause load shedding with high probability under various settings in the 14-bus test case, and also demonstrate system-wide threats in the 118-bus test case with limited local attacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا