ﻻ يوجد ملخص باللغة العربية
Attacks based on power analysis have been long existing and studied, with some recent works focused on data exfiltration from victim systems without using conventional communications (e.g., WiFi). Nonetheless, prior works typically rely on intrusive direct power measurement, either by implanting meters in the power outlet or tapping into the power cable, thus jeopardizing the stealthiness of attacks. In this paper, we propose NoDE (Noise for Data Exfiltration), a new system for stealthy data exfiltration from enterprise desktop computers. Specifically, NoDE achieves data exfiltration over a buildings power network by exploiting high-frequency voltage ripples (i.e., switching noises) generated by power factor correction circuits built into todays computers. Located at a distance and even from a different room, the receiver can non-intrusively measure the voltage of a power outlet to capture the high-frequency switching noises for online information decoding without supervised training/learning. To evaluate NoDE, we run experiments on seven different computers from top-vendors and using top brand power supply units. Our results show that for a single transmitter, NoDE achieves a rate of up to 28.48 bits/second with a distance of 90 feet (27.4 meters) without the line of sight, demonstrating a practically stealthy threat. Based on the orthogonality of switching noise frequencies of different computers, we also demonstrate simultaneous data exfiltration from four computers using only one receiver. Finally, we present a few possible defenses, such as installing noise filters, and discuss their limitations.
Radio-frequency identification(RFID) technology is widely applied in daily human life. The RFID cards are seen everywhere, from entrance guard to consumption. The information security of RFID cards, such as data confidentiality, tag anonymity, mutual
In this paper, for overcoming the drawbacks of the prior approaches, such as low generality, high cost, and high overhead, we propose a Low-Cost Anti-Copying (LCAC) 2D barcode by exploiting the difference between the noise characteristics of legal an
A significant problem for current quantum computers is noise. While there are many distinct noise channels, the depolarizing noise model often appropriately describes average noise for large circuits involving many qubits and gates. We present a meth
We derive a method to reconstruct Gaussian signals from linear measurements with Gaussian noise. This new algorithm is intended for applications in astrophysics and other sciences. The starting point of our considerations is the principle of minimum
The PICsIT detector onboard the INTEGRAL satellite was designed to provide information about emission in the soft gamma-ray band for many bright sources. Due to strong and variable instrumental background, only 4 objects have been detected so far usi