ترغب بنشر مسار تعليمي؟ اضغط هنا

Tschirnhaus transformations after Hilbert

62   0   0.0 ( 0 )
 نشر من قبل Jesse Wolfson
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Jesse Wolfson




اسأل ChatGPT حول البحث

Let RD(n) denote the minimum d for which there exists a formula for the roots of the general degree n polynomial using only algebraic functions of d or fewer variables. In 1927, Hilbert sketched how the 27 lines on a cubic surface could be used to construct a 4-variable formula for the general degree 9 polynomial (implying $RD(9)le 4$). In this paper, we turn Hilberts sketch into a general method. We show this method produces best-to-date upper bounds on RD(n) for all n, improving earlier results of Hamilton, Sylvester, Segre and Brauer.



قيم البحث

اقرأ أيضاً

We define the concept of Tschirnhaus-Weierstrass curve, named after the Weierstrass form of an elliptic curve and Tschirnhaus transformations. Every pointed curve has a Tschirnhaus-Weierstrass form, and this representation is unique up to a scaling o f variables. This is useful for computing isomorphisms between curves.
On any smooth algebraic variety over a $p$-adic local field, we construct a tensor functor from the category of de Rham $p$-adic etale local systems to the category of filtered algebraic vector bundles with integrable connections satisfying the Griff iths transversality, which we view as a $p$-adic analogue of Delignes classical Riemann--Hilbert correspondence. A crucial step is to construct canonical extensions of the desired connections to suitable compactifications of the algebraic variety with logarithmic poles along the boundary, in a precise sense characterized by the eigenvalues of residues; hence the title of the paper. As an application, we show that this $p$-adic Riemann--Hilbert functor is compatible with the classical one over all Shimura varieties, for local systems attached to representations of the associated reductive algebraic groups.
196 - Shinan Liu 2019
We construct a local model for Hilbert-Siegel moduli schemes with $Gamma_1(p)$-level bad reduction over $text{Spec }mathbb{Z}_{q}$, where $p$ is a prime unramified in the totally real field and $q$ is the residue cardinality over $p$. Our main tool i s a variant over the small Zariski site of the ring-equivariant Lie complex $_Aunderline{ell}_G^{vee}$ defined by Illusie in his thesis, where $A$ is a commutative ring and $G$ is a scheme of $A$-modules. We use it to calculate the $mathbb{F}_{q}$-equivariant Lie complex of a Raynaud group scheme, then relate the integral model and the local model.
92 - Ruochuan Liu , Xinwen Zhu 2016
We construct a functor from the category of p-adic etale local systems on a smooth rigid analytic variety X over a p-adic field to the category of vector bundles with an integrable connection over its base change to B_dR, which can be regarded as a f irst step towards the sought-after p-adic Riemann-Hilbert correspondence. As a consequence, we obtain the following rigidity theorem for p-adic local systems on a connected rigid analytic variety: if the stalk of such a local system at one point, regarded as a p-adic Galois representation, is de Rham in the sense of Fontaine, then the stalk at every point is de Rham. Along the way, we also establish some basic properties of the p-adic Simpson correspondence. Finally, we give an application of our results to Shimura varieties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا