ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal Interlacing Network

61   0   0.0 ( 0 )
 نشر من قبل Hao Shao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For a long time, the vision community tries to learn the spatio-temporal representation by combining convolutional neural network together with various temporal models, such as the families of Markov chain, optical flow, RNN and temporal convolution. However, these pipelines consume enormous computing resources due to the alternately learning process for spatial and temporal information. One natural question is whether we can embed the temporal information into the spatial one so the information in the two domains can be jointly learned once-only. In this work, we answer this question by presenting a simple yet powerful operator -- temporal interlacing network (TIN). Instead of learning the temporal features, TIN fuses the two kinds of information by interlacing spatial representations from the past to the future, and vice versa. A differentiable interlacing target can be learned to control the interlacing process. In this way, a heavy temporal model is replaced by a simple interlacing operator. We theoretically prove that with a learnable interlacing target, TIN performs equivalently to the regularized temporal convolution network (r-TCN), but gains 4% more accuracy with 6x less latency on 6 challenging benchmarks. These results push the state-of-the-art performances of video understanding by a considerable margin. Not surprising, the ensemble model of the proposed TIN won the $1^{st}$ place in the ICCV19 - Multi Moments in Time challenge. Code is made available to facilitate further research at https://github.com/deepcs233/TIN



قيم البحث

اقرأ أيضاً

Videos contain highly redundant information between frames. Such redundancy has been extensively studied in video compression and encoding, but is less explored for more advanced video processing. In this paper, we propose a learnable unified framewo rk for propagating a variety of visual properties of video images, including but not limited to color, high dynamic range (HDR), and segmentation information, where the properties are available for only a few key-frames. Our approach is based on a temporal propagation network (TPN), which models the transition-related affinity between a pair of frames in a purely data-driven manner. We theoretically prove two essential factors for TPN: (a) by regularizing the global transformation matrix as orthogonal, the style energy of the property can be well preserved during propagation; (b) such regularization can be achieved by the proposed switchable TPN with bi-directional training on pairs of frames. We apply the switchable TPN to three tasks: colorizing a gray-scale video based on a few color key-frames, generating an HDR video from a low dynamic range (LDR) video and a few HDR frames, and propagating a segmentation mask from the first frame in videos. Experimental results show that our approach is significantly more accurate and efficient than the state-of-the-art methods.
Temporal action proposal generation aims to estimate temporal intervals of actions in untrimmed videos, which is a challenging yet important task in the video understanding field. The proposals generated by current methods still suffer from inaccurat e temporal boundaries and inferior confidence used for retrieval owing to the lack of efficient temporal modeling and effective boundary context utilization. In this paper, we propose Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through local and global temporal context aggregation and complementary as well as progressive boundary refinement. Specifically, we first design a Local-Global Temporal Encoder (LGTE), which adopts the channel grouping strategy to efficiently encode both local and global temporal inter-dependencies. Furthermore, both the boundary and internal context of proposals are adopted for frame-level and segment-level boundary regressions, respectively. Temporal Boundary Regressor (TBR) is designed to combine these two regression granularities in an end-to-end fashion, which achieves the precise boundaries and reliable confidence of proposals through progressive refinement. Extensive experiments are conducted on three challenging datasets: HACS, ActivityNet-v1.3, and THUMOS-14, where TCANet can generate proposals with high precision and recall. By combining with the existing action classifier, TCANet can obtain remarkable temporal action detection performance compared with other methods. Not surprisingly, the proposed TCANet won the 1$^{st}$ place in the CVPR 2020 - HACS challenge leaderboard on temporal action localization task.
This technical report presents our solution for temporal action detection task in AcitivityNet Challenge 2021. The purpose of this task is to locate and identify actions of interest in long untrimmed videos. The crucial challenge of the task comes fr om that the temporal duration of action varies dramatically, and the target actions are typically embedded in a background of irrelevant activities. Our solution builds on BMN, and mainly contains three steps: 1) action classification and feature encoding by Slowfast, CSN and ViViT; 2) proposal generation. We improve BMN by embedding the proposed Proposal Relation Network (PRN), by which we can generate proposals of high quality; 3) action detection. We calculate the detection results by assigning the proposals with corresponding classification results. Finally, we ensemble the results under different settings and achieve 44.7% on the test set, which improves the champion result in ActivityNet 2020 by 1.9% in terms of average mAP.
Temporal language grounding (TLG) is a fundamental and challenging problem for vision and language understanding. Existing methods mainly focus on fully supervised setting with temporal boundary labels for training, which, however, suffers expensive cost of annotation. In this work, we are dedicated to weakly supervised TLG, where multiple description sentences are given to an untrimmed video without temporal boundary labels. In this task, it is critical to learn a strong cross-modal semantic alignment between sentence semantics and visual content. To this end, we introduce a novel weakly supervised temporal adjacent network (WSTAN) for temporal language grounding. Specifically, WSTAN learns cross-modal semantic alignment by exploiting temporal adjacent network in a multiple instance learning (MIL) paradigm, with a whole description paragraph as input. Moreover, we integrate a complementary branch into the framework, which explicitly refines the predictions with pseudo supervision from the MIL stage. An additional self-discriminating loss is devised on both the MIL branch and the complementary branch, aiming to enhance semantic discrimination by self-supervising. Extensive experiments are conducted on three widely used benchmark datasets, emph{i.e.}, ActivityNet-Captions, Charades-STA, and DiDeMo, and the results demonstrate the effectiveness of our approach.
180 - Defu Cao , Jiachen Li , Hengbo Ma 2021
An effective understanding of the contextual environment and accurate motion forecasting of surrounding agents is crucial for the development of autonomous vehicles and social mobile robots. This task is challenging since the behavior of an autonomou s agent is not only affected by its own intention, but also by the static environment and surrounding dynamically interacting agents. Previous works focused on utilizing the spatial and temporal information in time domain while not sufficiently taking advantage of the cues in frequency domain. To this end, we propose a Spectral Temporal Graph Neural Network (SpecTGNN), which can capture inter-agent correlations and temporal dependency simultaneously in frequency domain in addition to time domain. SpecTGNN operates on both an agent graph with dynamic state information and an environment graph with the features extracted from context images in two streams. The model integrates graph Fourier transform, spectral graph convolution and temporal gated convolution to encode history information and forecast future trajectories. Moreover, we incorporate a multi-head spatio-temporal attention mechanism to mitigate the effect of error propagation in a long time horizon. We demonstrate the performance of SpecTGNN on two public trajectory prediction benchmark datasets, which achieves state-of-the-art performance in terms of prediction accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا