ﻻ يوجد ملخص باللغة العربية
The quest for binary and dual supermassive black holes (SMBHs) at the dawn of the multi-messenger era is compelling. Detecting dual active galactic nuclei (AGN) -- active SMBHs at projected separations larger than several parsecs -- and binary AGN -- probing the scale where SMBHs are bound in a Keplerian binary -- is an observational challenge. The study of AGN pairs (either dual or binary) also represents an overarching theoretical problem in cosmology and astrophysics. The AGN triggering calls for detailed knowledge of the hydrodynamical conditions of gas in the imminent surroundings of the SMBHs and, at the same time, their duality calls for detailed knowledge on how galaxies assemble through major and minor mergers and grow fed by matter along the filaments of the cosmic web. This review describes the techniques used across the electromagnetic spectrum to detect dual and binary AGN candidates and proposes new avenues for their search. The current observational status is compared with the state-of-the-art numerical simulations and models for formation of dual and binary AGN. Binary SMBHs are among the loudest sources of gravitational waves (GWs) in the Universe. The search for a background of GWs at nHz frequencies from inspiralling SMBHs at low redshifts, and the direct detection of signals from their coalescence by the Laser Interferometer Space Antenna in the next decade, make this a theme of major interest for multi-messenger astrophysics. This review discusses the future facilities and observational strategies that are likely to significantly advance this fascinating field.
Pulsar timing arrays are sensitive to gravitational waves from supermassive black hole (SMBH) binaries at orbital separations of << 1pc. There is currently an observational paucity of such systems, although they are central figures in studies of gala
Quasars whose broad emission lines show temporal, bulk radial velocity (RV) shifts have been proposed as candidate sub-parsec (sub-pc), binary supermassive black holes (BSBHs). We identified a sample of 16 BSBH candidates based on two-epoch spectrosc
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems will modulate the arrival times of pulses from radio puls
Supermassive binary black holes (SMBBHs) are laboratories par excellence for relativistic effects, including precession effects in the Kerr metric and the emission of gravitational waves. Binaries form in the course of galaxy mergers, and are a key c
The discoveries made over the past 20 years by Chandra and XMM-Newton surveys in conjunction with multiwavelength imaging and spectroscopic data available in the same fields have significantly changed the view of the supermassive black hole (SMBH) an