ﻻ يوجد ملخص باللغة العربية
Characterizing high-dimensional entangled states is of crucial importance in quantum information science and technology. Recent theoretical progress has been made to extend the Hardys paradox into a general scenario with multisetting multidimensional systems, which can surpass the bound limited by the original version. Hitherto, no experimental verification has been conducted to verify such a Hardys paradox, as most of previous experimental efforts were restricted to two-dimensional systems. Here, based on two-photon high-dimensional orbital angular momentum (OAM) entanglement, we report the first experiment to demonstrate the Hardys paradox for multiple settings and multiple outcomes. We demonstrate the paradox for two-setting higher-dimensional OAM subspaces up to d = 7, which reveals that the nonlocal events increase with the dimension. Furthermore, we showcase the nonlocality with an experimentally recording probability of 36.77% for five-setting three-dimensional OAM subspace via entanglement concentration, and thus showing a sharper contradiction between quantum mechanics and classical theory.
Since the pillars of quantum theory were established, it was already noted that quantum physics may allow certain correlations defying any local realistic picture of nature, as first recognized by Einstein, Podolsky and Rosen. These quantum correlati
As a special experimental technique, weak measurement extracts very little information about the measured system and will not cause the measured state collapse. When coupling the orbital angular momentum (OAM) state with a well-defined pre-selected a
Single photons with orbital angular momentum (OAM) have attracted substantial attention from researchers. A single photon can carry infinite OAM values theoretically. Thus, OAM photon states have been widely used in quantum information and fundamenta
We reveal for the first time a direct relationship between the diffraction of optical beams and their carrying orbital angular momentum (OAM). We experimentally demonstrate a novel phenomenon that the anisotropic diffraction can be induced by the OAM
Free-space communication allows one to use spatial mode encoding, which is susceptible to the effects of diffraction and turbulence. Here, we discuss the optimum communication modes of a system while taking such effects into account. We construct a f