ﻻ يوجد ملخص باللغة العربية
Lithium abundances are presented for 91 dwarf and subgiant stars in the Galactic bulge. The analysis is based on line synthesis of the 7Li line at 6707 {AA} in high-resolution spectra obtained during gravitational microlensing events, when the brightnesses of the targets were highly magnified. Our main finding is that the bulge stars at sub-solar metallicities, and that are older than about eight billion years, does not show any sign of Li production, that is, the Li trend with metallicity is flat (or even slightly declining). This indicates that no lithium was produced during the first few billion years in the history of the bulge. This finding is essentially identical to what is seen for the (old) thick disk stars in the Solar neighbourhood, and adds another piece of evidence for a tight connection between the metal-poor bulge and the Galactic thick disk. For the bulge stars younger than about eight billion years, the sample contains a group of stars at very high metallicities at [Fe/H]~+0.4 that have lithium abundances in the range A(Li)=2.6-2.8. In the Solar neighbourhood the lithium abundances have been found to peak at a A(Li)~3.3 at [Fe/H]~ +0.1 and then decrease by 0.4-0.5 dex when reaching [Fe/H]~+0.4. The few bulge stars that we have at these metallicities, seem to support this declining A(Li) trend. This could indeed support the recent claim that the low A(Li) abundances at the highest metallicities seen in the Solar neighbourhood could be due to stars from the inner disk, or the bulge region, that have migrated to the Solar neighbourhood.
CONTEXT: [ABRIDGED]. For the Milky Way bulge, there are currently essentially no measurements of carbon in un-evolved stars, hampering our abilities to properly compare Galactic chemical evolution models to observational data for this still enigmatic
AIMS. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We t
Based on high-resolution spectra obtained during gravitational microlensing events we present a detailed elemental abundance analysis of 32 dwarf and subgiant stars in the Galactic bulge. [ABRIDGED], we now have 58 microlensed bulge dwarfs and subgia
The Bulge is the least understood major stellar population of the Milky Way. Most of what we know about the formation and evolution of the Bulge comes from bright giant stars. The underlying assumption that giants represent all the stars, and accurat
We present a detailed elemental abundance study of 90 F and G dwarf, turn-off and subgiant stars in the Galactic bulge. Based on high-resolution spectra acquired during gravitational microlensing events, stellar ages and abundances for 11 elements (N