ﻻ يوجد ملخص باللغة العربية
We continue the study of computable embeddings for pairs of structures, i.e. for classes containing precisely two non-isomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a non-trivial degree structure. Our main result shows that although ${omega cdot 2, omega^star cdot 2}$ is computably embeddable in ${omega^2, {(omega^2)}^star}$, the class ${omega cdot k,omega^star cdot k}$ is emph{not} computably embeddable in ${omega^2, {(omega^2)}^star}$ for any natural number $k geq 3$.
We study computable embeddings for pairs of structures, i.e. for classes containing precisely two non-isomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a non-trivial degree structure. Our m
We prove that the injectively omega-tree-automatic ordinals are the ordinals smaller than $omega^{omega^omega}$. Then we show that the injectively $omega^n$-automatic ordinals, where $n>0$ is an integer, are the ordinals smaller than $omega^{omega^n}
Given a cardinal $kappa$ and a sequence $left(alpha_iright)_{iinkappa}$ of ordinals, we determine the least ordinal $beta$ (when one exists) such that the topological partition relation [betarightarrowleft(top,alpha_iright)^1_{iinkappa}] holds, inclu
We study the topological version of the partition calculus in the setting of countable ordinals. Let $alpha$ and $beta$ be ordinals and let $k$ be a positive integer. We write $betato_{top}(alpha,k)^2$ to mean that, for every red-blue coloring of the
We define a collection of topological Ramsey spaces consisting of equivalence relations on $omega$ with the property that the minimal representatives of the equivalence classes alternate according to a fixed partition of $omega$. To prove the associa