ترغب بنشر مسار تعليمي؟ اضغط هنا

Selective C-C Coupling by Spatially Confined Dimeric Metal Centers

117   0   0.0 ( 0 )
 نشر من قبل Si Zhou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Direct conversion of carbon dioxide (CO2) to high-energy fuels and high-value chemicals is a fascinating sustainable strategy. For most of the current electrocatalysts for CO2 reduction, however, multi-carbon products are inhibited by large overpotentials and low selectivity. For practical applications, there remains a big gap of knowledge in proper manipulation of the C-C coupling process. Herein, we exploit dispersed 3d transition metal dimers as spatially confined dual reaction centers for selective reduction of CO2 to liquid fuels. Various nitrogenated holey carbon monolayers are shown to be promising templates to stabilize these metal dimers and dictate their electronic structures, allowing precise control of the catalytic activity and product selectivity. By comprehensive first-principles calculations, we screen the suitable transition metal dimers that universally have high activity for ethanol (C2H5OH). Furthermore, remarkable selectivity for C2H5OH against other C1 and C2 products is found for Fe2 dimer anchored on C2N monolayer. The correlation between the activity and d band center of the supported metal dimer as well as the role of electronic coupling between the metal dimer and the carbon substrates are thoroughly elucidated.



قيم البحث

اقرأ أيضاً

Nuclear inelastic scattering of synchrotron radiation has been used now since 10 years as a tool for vibrational spectroscopy. This method has turned out especially useful in case of large molecules that contain a Mossbauer active metal center. Recen t applications to iron-sulfur proteins, to iron(II) spin crossover complexes and to tin-DNA complexes are discussed. Special emphasis is given to the combination of nuclear inelastic scattering and density functional calculations.
Electronic spectra of C$_6$H are measured in the $18,950-21,100$ cm$^{-1}$ domain using cavity ring-down spectroscopy of a supersonically expanding hydrocarbon plasma. In total, 19 (sub)bands of C$_6$H are presented, all probing the vibrational manif old of the B$^2Pi$ electronically excited state. The assignments are guided by electronic spectra available from matrix isolation work, isotopic substitution experiments (yielding also spectra for $^{13}$C$_6$H and C$_6$D), predictions from ab initio calculations as well as rotational fitting and vibrational contour simulations using the available ground state parameters as obtained from microwave experiments. Besides the $0_0^0$ origin band, three non-degenerate stretching vibrations along the linear backbone of the C$_6$H molecule are assigned: the $ u_6$ mode associated with the C-C bond vibration and the $ u_4$ and $ u_3$ modes associated with C$equiv$C triple bonds. For the two lowest $ u_{11}$ and $ u_{10}$ bending modes, a Renner-Teller analysis is performed identifying the $mu^2Sigma$($ u_{11}$) and both $mu^2Sigma$($ u_{10}$) and $kappa^2Sigma$($ u_{10}$) components. In addition, two higher lying bending modes are observed, which are tentatively assigned as $mu^2Sigma$($ u_9$) and $mu^2Sigma$($ u_8$) levels. In the excitation region below the first non-degenerate vibration ($ u_6$), some $^2Pi-^{2}Pi$ transitions are observed that are assigned as even combination modes of low-lying bending vibrations. The same holds for a $^2Pi-^{2}Pi$ transition found above the $ u_6$ level. From these spectroscopic data and the vibronic analysis a comprehensive energy level diagram for the B$^2Pi$ state of C$_6$H is derived and presented.
We study the formation of C$_{18}$H and C$_{18}$H$_2$ by irradiating a cyclo[$18$]carbon molecule with atomic and molecular hydrogen at impact energy, $E$, in the range of 0.5-25 eV. We utilize the density-functional tight-binding method to perform m olecular dynamics simulations to emulate the interaction of a carbon ring when colliding with atomic or molecular hydrogen. From our results, the formation of the C$_{18}$H molecules is likely to occur upon irradiating by H atoms at $E < 10$ eV and by H$_2$ molecules at $2 < E < 15$ eV center of mass energy. Formation of C$_{18}$H$_2$ molecules is only observed at around $E = 2$ eV. Our results show that the absorption of hydrogen is more prone in atomic than in molecular hydrogen atmosphere. Thus, we find that the probability of physio-absorption reaches up to 80 % for atomic projectiles with $E < 5$ eV but only up to 10 % for the molecular ones. Our analysis shows that the deformation of the carbon ring due to the hydrogen bonding produces transition from $sp$ to $sp^2$ hybridization. The angle between the carbon atoms at the locations near to the H bond in the resulting ring is not 120$^o$ but instead 110$^o$ degrees. No molecular fragmentation of the C$_{18}$ ring is observed.
105 - Changming Yue , Yusuke Nomura , 2021
Thin films provide a versatile platform to tune electron correlations and explore new physics in strongly correlated materials. Epitaxially grown thin films of the alkali-doped fulleride K$_{3+x}$C$_{60}$, for example, exhibit various intriguing phen omena, including Mott transitions and superconductivity, depending on dimensionality and doping. Surprisingly, in the trilayer case, a strong electron-hole doping asymmetry has been observed in the superconducting phase, which is absent in the three-dimensional bulk limit. Using density-functional theory plus dynamical mean-field theory, we show that this doping asymmetry results from a substantial charge reshuffling from the top layer to the middle layer. While the nominal filling per fullerene is close to $n=3$, the top layer rapidly switches to an $n=2$ insulating state upon hole doping, which explains the doping asymmetry of the superconducting gap. The interlayer charge transfer and layer-selective metal-insulator transition result from the interplay between crystal field splittings, strong Coulomb interactions, and an effectively negative Hund coupling. This peculiar charge reshuffling is absent in the monolayer system, which is an $n=3$ Mott insulator, as expected from the nominal filling.
170 - A. Shugai , U. Nagel , Y. Murata 2021
Infrared absorption spectroscopy study of endohedral water molecule in a solid mixture of H$_2$O@C$_{60}$ and C$_{60}$ was carried out at liquid helium temperature. From the evolution of the spectra during the ortho-para conversion process, the spect ral lines were identified as para- and ortho-water transitions. Eight vibrational transitions with rotational side peaks were observed in the mid-infrared: $omega_1$, $omega_2$, $omega_3$, $2omega_1$, $2omega_2$, $omega_1 +omega_3$, $omega_2 +omega_3$, and $2omega_2+omega_3$. The vibrational frequencies $omega_2$ and 2$omega_2$ are lower by 1.6% and the rest by 2.4%, as compared to free water/. A model consisting of a rovibrational Hamiltonian with the dipole and quadrupole moments of water interacting with the crystal field was used to fit the infrared absorption spectra. The electric quadrupole interaction with the crystal field lifts the degeneracy of the rotational levels. The finite amplitudes of the pure $v_1$ and $v_2$ vibrational transitions are consistent with the interaction of the water molecule dipole moment with a lattice-induced electric field. The permanent dipole moment of encapsulated water/ is found to be $0.5pm 0.1$ D as determined from the far-infrared rotational line intensities. The translational mode of the quantized center of mass motion of water/ in the molecular cage of C$_{60}$ was observed at 110cm$^{-1}$ (13.6meV).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا