ﻻ يوجد ملخص باللغة العربية
We consider the parabolic polyharmonic diffusion and $L^2$-gradient flows of the $m$-th arclength derivative of curvature for regular closed curves evolving with generalised Neumann boundary conditions. In the polyharmonic case, we prove that if the curvature of the initial curve is small in $L^2$, then the evolving curve converges exponentially in the $C^infty$ topology to a straight horizontal line segment. The same behaviour is shown for the $L^2$-gradient flow provided the energy of the initial curve is sufficiently small. In each case the smallness conditions depend only on $m$.
In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bs
This paper is concerned with the multiplicity results to a class of $p$-Kirchhoff type elliptic equation with the homogeneous Neumann boundary conditions by an abstract linking lemma due to Br{e}zis and Nirenberg. We obtain the twofold results in sub
In this paper we study a variational Neumann problem for the higher order $s$-fractional Laplacian, with $s>1$. In the process, we introduce some non-local Neumann boundary conditions that appear in a natural way from a Gauss-like integration formula.
We classify positive solutions to a class of quasilinear equations with Neumann or Robin boundary conditions in convex domains. Our main tool is an integral formula involving the trace of some relevant quantities for the problem. Under a suitable con
This is the first part of our study of inertial manifolds for the system of 1D reaction-diffusion-advection equations which is devoted to the case of Dirichlet or Neumann boundary conditions. Although this problem does not initially possess the spect