ﻻ يوجد ملخص باللغة العربية
In this paper we revisit the idea of pseudo-labeling in the context of semi-supervised learning where a learning algorithm has access to a small set of labeled samples and a large set of unlabeled samples. Pseudo-labeling works by applying pseudo-labels to samples in the unlabeled set by using a model trained on the combination of the labeled samples and any previously pseudo-labeled samples, and iteratively repeating this process in a self-training cycle. Current methods seem to have abandoned this approach in favor of consistency regularization methods that train models under a combination of different styles of self-supervised losses on the unlabeled samples and standard supervised losses on the labeled samples. We empirically demonstrate that pseudo-labeling can in fact be competitive with the state-of-the-art, while being more resilient to out-of-distribution samples in the unlabeled set. We identify two key factors that allow pseudo-labeling to achieve such remarkable results (1) applying curriculum learning principles and (2) avoiding concept drift by restarting model parameters before each self-training cycle. We obtain 94.91% accuracy on CIFAR-10 using only 4,000 labeled samples, and 68.87% top-1 accuracy on Imagenet-ILSVRC using only 10% of the labeled samples. The code is available at https://github.com/uvavision/Curriculum-Labeling
Federated learning enables multiple clients, such as mobile phones and organizations, to collaboratively learn a shared model for prediction while protecting local data privacy. However, most recent research and applications of federated learning ass
We present a multiview pseudo-labeling approach to video learning, a novel framework that uses complementary views in the form of appearance and motion information for semi-supervised learning in video. The complementary views help obtain more reliab
Active learning (AL) combines data labeling and model training to minimize the labeling cost by prioritizing the selection of high value data that can best improve model performance. In pool-based active learning, accessible unlabeled data are not us
Federated Learning has shown great potentials for the distributed data utilization and privacy protection. Most existing federated learning approaches focus on the supervised setting, which means all the data stored in each client has labels. However
3D object detection is an important task in computer vision. Most existing methods require a large number of high-quality 3D annotations, which are expensive to collect. Especially for outdoor scenes, the problem becomes more severe due to the sparse