ﻻ يوجد ملخص باللغة العربية
For multi-time wave functions, which naturally arise as the relativistic particle-position representation of the quantum state vector, the analog of the Schrodinger equation consists of several equations, one for each time variable. This leads to the question of how to prove the consistency of such a system of PDEs. The question becomes more difficult for theories with particle creation, as then different sectors of the wave function have different numbers of time variables. Petrat and Tumulka (2014) gave an example of such a model and a non-rigorous argument for its consistency. We give here a rigorous version of the argument after introducing an ultraviolet cut-off into the creation and annihilation terms of the multi-time evolution equations. These equations form an infinite system of coupled PDEs; they are based on the Dirac equation but are not fully relativistic (in part because of the cut-off). We prove the existence and uniqueness of a smooth solution to this system for every initial wave function from a certain class that corresponds to a dense subspace in the appropriate Hilbert space.
Bohmian mechanics is a non-relativistic quantum theory based on a particle approach. In this paper we study the Schrodinger equation with rapidly oscillating potential and the associated Bohmian trajectory. We prove that the corresponding Bohmian tra
We consider the totally asymmetric simple exclusion process with initial conditions generating a shock. The fluctuations of particle positions are asymptotically governed by the randomness around the two characteristic lines joining at the shock. Unl
In this paper we provide a detailed description of the eigenvalue $ E_{D}(x_0)leq 0$ (respectively $ E_{N}(x_0)leq 0$) of the self-adjoint Hamiltonian operator representing the negative Laplacian on the positive half-line with a Dirichlet (resp. Neum
Quantum trajectories are Markov processes that describe the time-evolution of a quantum system undergoing continuous indirect measurement. Mathematically, they are defined as solutions of the so-called Stochastic Schrodinger Equations, which are nonl
We describe coherent states and associated generalized Grassmann variables for a system of $m$ independent $q$-boson modes. A resolution of unity in terms of generalized Berezin integrals leads to generalized Grassmann symbolic calculus. Formulae for