ترغب بنشر مسار تعليمي؟ اضغط هنا

A Complete Catalogue of Dusty Supernova Remnants

289   0   0.0 ( 0 )
 نشر من قبل Hannah Chawner
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We search for far-infrared (FIR) counterparts of known supernova remnants (SNRs) in the Galactic plane (360 degrees in longitude and b = +/- 1 deg ) at 70 - 500 micron with Herschel. We detect dust signatures in 39 SNRs out of 190, made up of 13 core-collapse supernovae (CCSNe), including 4 Pulsar Wind Nebulae (PWNe), and 2 Type Ia SNe. A further 24 FIR detected SNRs have unknown types. We confirm the FIR detection of ejecta dust within G350.1-0.3, adding to the known sample of ~10 SNRs containing ejecta dust. We discover dust features at the location of a radio core at the centre of G351.2+0.1, indicating FIR emission coincident with a possible Crab-like compact object, with dust temperature and mass of Td = 45.8 K and Md = 0.18 solar mass, similar to the PWN G54.1+0.3. We show that the detection rate is higher among young SNRs. We produce dust temperature maps of 11 SNRs and mass maps of those with distance estimates, finding dust at temperatures 15 < Td < 40 K. If the dust is heated by shock interactions the shocked gas must be relatively cool and/or have a low density to explain the observed low grain temperatures.



قيم البحث

اقرأ أيضاً

74 - I. Moumen , C. Robert , D. Devost 2019
We present O CAESAR, the Optical CAtalogue of Extragalactic SupernovA Remnants. O CAESAR will provide the largest homogeneous optical survey of extragalactic SNR candidates taken by the same telescope, the same instrument, and under similar observati onal conditions. Our sample is volume-limited (D $leq$ 10 Mpc) and includes mostly galaxies ($sim$40) from the Large Program SIGNALS. The Observations are carried out using SITELLE, the imaging Fourier transform spectrograph of the Canada-France-Hawaii Telescope. Using three filters, we are able to measure the strong emission lines [O II]$lambda$3727, H$beta$, [O III]$lambdalambda$4959,5007, H$alpha$, [N II]$lambdalambda$6548,6583, and [S II]$lambdalambda$6716,6731. Identification of the SNR candidates will be done automatically and will be based on four criteria for regions where the emission lines flux ratio [S II]/H$alpha$ $ge$ 0.4. To confirm the shock-heated nature of the ionization mechanism in the candidates derived from our sample, we adopted a self-consistent spectroscopic analysis using the whole set of emission lines available with our SITELLE data and considering Sabbadin plots and BPT diagrams. We here present our method and first results for the spiral galaxy NGC 3344.
We present a new catalogue of radio sources in the face-on spiral galaxy M83. Radio observations taken in 2011, 2015, and 2017 with the Australia Telescope Compact Array (ATCA) at 5.5 and 9 GHz have detected 270 radio sources. Although a small number of these sources are background extragalactic sources, most are either H II regions or supernova remnants (SNRs) within M83 itself. Three of the six historical supernovae are detected, as is the very young remnant that had been identified in a recent study, which is likely the result of a supernova that exploded in the last ~100 years but was missed. All of these objects are generally fading with time. Confusion limits our ability to measure the radio emission from a number of the SNRs in M83, but 64 were detected in unconfused regions, and these have the approximate power-law luminosity function which has been observed in other galaxies. The SNRs in M83 are systematically smaller in diameter and brighter than those that have been detected at radio wavelengths in M33. A number of the radio sources are coincident with X-ray sources in M83; most of these coincident sources turn out to be supernova remnants. Our dual frequency observations are among the most sensitive to date for a spiral galaxy outside the Local Group; despite this we were not able to place realistic constraints on the spectral indices, and as a result, it was not possible to search for supernova remnants based on their radio properties alone.
We search for far-infrared (FIR) counterparts of known supernova remnants (SNRs) in the Galactic plane (10 deg <| l |< 60 deg) at 70-500 micron using the Herschel Infrared Galactic Plane Survey (Hi-GAL). Of 71 sources studied, we find that 29 (41 per cent) SNRs have a clear FIR detection of dust emission associated with the SNR. Dust from 8 of these is in the central region, and 4 indicate pulsar wind nebulae (PWNe) heated ejecta dust. A further 23 have dust emission in the outer shell structures which is potentially related to swept up material. Many Galactic SNe have dust signatures but we are biased towards detecting ejecta dust in young remnants and those with a heating source (shock or PWN). We estimate the dust temperature and mass contained within three PWNe, G11.2-0.3, G21.5-0.9, and G29.7-0.3 using modified blackbody fits. To more rigorously analyse the dust properties at various temperatures and dust emissivity index beta, we use point process mapping (PPMAP). We find significant quantities of cool dust (at 20-40 K) with dust masses of Md = 0.34 +/- 0.14 solar mass, Md = 0.29 +/- 0.08 solar mass, and Md = 0.51 +/- 0.13 solar mass for G11.2-0.3, G21.5-0.9, and G29.7-0.3 respectively. We derive the dust emissivity index for the PWN ejecta dust in G21.5-0.3 to be beta = 1.4 +/- 0.5 compared to dust in the surrounding medium where beta = 1.8 +/- 0.1.
(Abridged) Heating of the interstellar medium by multiple supernovae (SNe) explosions is at the heart of producing galaxy-scale outflows. We use hydrodynamical simulations to study the efficiency of multiple SNe in heating the interstellar medium (IS M) and filling the volume with gas of high temperatures. We argue that it is important for SNe remnants to have a large filling factor {it and} a large heating efficiency. For this, they have to be clustered in space and time, and keep exploding until the hot gas percolates through the whole region, in order to compensate for the radiative loss. In the case of a limited number of SNe, we find that although the filling factor can be large, the heating efficiency declines after reaching a large value. In the case of a continuous series of SNe, the hot gas ($T ge 3 times 10^6$ K) can percolate through the whole region after the total volume filling factor reaches a threshold of $sim 0.3$. The efficiency of heating the gas to X-ray temperatures can be $ge 0.1$ after this percolation epoch, which occurs after a period of $approx 10$ Myr for a typical starburst SNe rate density of $ u_{rm SN} approx 10^{-9}$ pc$^{-3}$ yr$^{-1}$ and gas density of $napprox 10$ cm$^{-3}$ in starburst nuclei regions. This matches the recent observations of a time delay of similar order between the onset of star formation and galactic outflows. The efficiency to heat gas up to X-ray temperatures ($ge 10^{6.5}$ K) roughly scales as $ u_{rm SN}^{0.2} n^{-0.6}$. For a typical SNe rate density and gas density in starburst nuclei, the heating efficiency is $sim 0.15$, also consistent with previous interpretations from X-ray observations. We discuss the implications of our results with regard to observational diagnostics of ionic ratios and emission measures in starburst nuclei regions.
126 - Dirk Lennarz 2011
In this paper a new supernova catalogue containing data for 5526 extragalactic supernovae that were discovered up to 2010 December 31 is presented. It combines several catalogues that are currently available online in a consistent and traceable way. During the comparison of the catalogues inconsistent entries were identified and resolved where possible. Remaining inconsistencies are marked transparently and can be easily identified. Thus it is possible to select a high-quality sample in a most simple way. Where available, redshift-based distance estimates to the supernovae were replaced by journal-refereed distances. Examples of statistical studies that are now possible with this new catalogue are presented in this paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا