ﻻ يوجد ملخص باللغة العربية
We investigate the relation between the time-ordered vacuum correlation functions for interacting real scalar fields in Minkowski spacetime and in the Rindler wedge. The correlation functions are constructed perturbatively within the in-in formalism, often employed in calculations in more general spacetimes. We prove to all orders in perturbation theory that the time-ordered vacuum correlation functions can be calculated in the in-in formalism with internal vertices restricted to any Rindler wedge containing the external points. This implies that the Minkowski in-in (or in-out) perturbative expansion of the vacuum correlation functions is reproduced by the Rindler in-in perturbative expansion of these correlators in a thermal state at the Unruh temperature.
We present a proof that quantum Yang-Mills theory can be consistently defined as a renormalized, perturbative quantum field theory on an arbitrary globally hyperbolic curved, Lorentzian spacetime. To this end, we construct the non-commutative algebra
This is the first of a series of papers in which we use analyticity properties of quantum fields propagating on a spacetime to uncover a new multiverse geometry when the classical geometry has horizons and/or singularities. The nature and origin of t
Production of scalar particles by a relativistic, semi-transparent mirror in 1+3D Minkowski spacetime based on the Barton-Calogeracos (BC) action is investigated. The corresponding Bogoliubov coefficients are derived for a mirror with arbitrary traje
The Lorentzian distance formula, conjectured several years ago by Parfionov and Zapatrin, has been recently proved by the second author. In this work we focus on the derivation of an equivalent expression in terms of the geometry of 2-spinors by usin
In classical General Relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration e