ﻻ يوجد ملخص باللغة العربية
In this paper we present novel integrable symplectic maps, associated with ordinary difference equations, and show how they determine, in a remarkably diverse manner, the integrability, including Lax pairs and the explicit solutions, for integrable partial difference equations which are the discrete counterparts of integrable partial differential equations of Korteweg-de Vries-type (KdV-type). As a consequence it is demonstrated that several distinct Hamiltonian systems lead to one and the same difference equation by means of the Liouville integrability framework. Thus, these integrable symplectic maps may provide an efficient tool for characterizing, and determining the integrability of, partial difference equations.
We study the small dispersion limit for the Korteweg-de Vries (KdV) equation $u_t+6uu_x+epsilon^{2}u_{xxx}=0$ in a critical scaling regime where $x$ approaches the trailing edge of the region where the KdV solution shows oscillatory behavior. Using t
By using the multiple scale method with the simultaneous introduction of multiple times, we study the propagation of long surface-waves in a shallow inviscid fluid. As a consequence of the requirements of scale invariance and absence of secular terms
In this paper, KdV-type equations with time- and space-dependent coefficients are considered. Assuming that the dispersion coefficient in front of $u_{xxx}$ is positive and uniformly bounded away from the origin and that a primitive function of the r
In this paper, we consider the discrete power function associated with the sixth Painleve equation. This function is a special solution of the so-called cross-ratio equation with a similarity constraint. We show in this paper that this system is embe
Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in 1+1 dimension and in 2+1 dimension. Especially in