ﻻ يوجد ملخص باللغة العربية
A typical goal of a quantum simulation is to find the energy levels and eigenstates of a given Hamiltonian. This can be realized by adiabatically varying the system control parameters to steer an initial eigenstate into the eigenstate of the target Hamiltonian. Such an adiabatic quantum simulation is demonstrated by directly implementing a controllable and smoothly varying Hamiltonian in the rotating frame of two superconducting qubits, including longitudinal and transverse fields and iSWAP-type two-qubit interactions. The evolution of each eigenstate is tracked using time-resolved state tomography. The energy gaps between instantaneous eigenstates are chosen such that depending on the energy transition rate either diabatic or adiabatic passages are observed in the measured energies and correlators. Errors in the obtained energy values induced by finite $T_1$ and $T_2$ times of the qubits are mitigated by extrapolation to short protocol times.
We present generalized adiabatic theorems for closed and open quantum systems that can be applied to slow modulations of rapidly varying fields, such as oscillatory fields that occur in optical experiments and light induced processes. The generalized
We propose a quantum simulator based on driven superconducting qubits where the interactions are generated parametrically by a polychromatic magnetic flux modulation of a tunable bus element. Using a time-dependent Schrieffer-Wolff transformation, we
Gate-based quantum computers can in principle simulate the adiabatic dynamics of a large class of Hamiltonians. Here we consider the cyclic adiabatic evolution of a parameter in the Hamiltonian. We propose a quantum algorithm to estimate the Berry ph
The controls enacting logical operations on quantum systems are described by time-dependent Hamiltonians that often include rapid oscillations. In order to accurately capture the resulting time dynamics in numerical simulations, a very small integrat
Quantum state tomography (QST) is an essential tool for characterizing an unknown quantum state. Recently, QST has been performed for entangled qudits based on orbital angular momentum, time-energy uncertainty, and frequency bins. Here, we propose a