ﻻ يوجد ملخص باللغة العربية
We study collective oscillations of Majorana neutrinos in some of the most extreme astrophysical sites such as neutron star merger remnants and magneto-rotational core-collapse supernovae which include dense neutrino media in the presence of strong magnetic fields. We show that neutrinos can reach flavor equilibrium if neutrino transition magnetic moment $mu_ u$ is strong enough, namely when $mu_ u/mu_{rm{B}} gtrsim 10^{-14}-10^{-15}$ with $mu_{rm{B}}$ being the Bohr magneton. This sort of flavor equilibrium, which is not necessarily flavor equipartition, can occur on (short) scales determined by the strength of the magnetic term. Our findings can have interesting implications for the physics of such violent astrophysical environments.
We bring to light a novel mechanism through which turbulent matter density fluctuations can induce collective neutrino flavor
We study the evolution of massive mixed Dirac and Majorana neutrinos in matter under the influence of a transversal magnetic field. The analysis is based on relativistic quantum mechanics. We solve exactly the evolution equation for relativistic neut
We simulate neutrino-antineutrino oscillations caused by strong magnetic fields in dense matter. With the strong magnetic fields and large neutrino magnetic moments, Majorana neutrinos can reach flavor equilibrium. We find that the flavor equilibrati
We investigate collective flavor oscillations of supernova neutrinos at late stages of the explosion. We first show that the frequently used single-angle (averaged coupling) approximation predicts oscillations close to, or perhaps even inside, the ne
We give a very brief overview of collective effects in neutrino oscillations in core collapse supernovae where refractive effects of neutrinos on themselves can considerably modify flavor oscillations, with possible repercussions for future supernova