ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting depression in dyadic conversations with multimodal narratives and visualizations

100   0   0.0 ( 0 )
 نشر من قبل Joshua Kim
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Conversations contain a wide spectrum of multimodal information that gives us hints about the emotions and moods of the speaker. In this paper, we developed a system that supports humans to analyze conversations. Our main contribution is the identification of appropriate multimodal features and the integration of such features into verbatim conversation transcripts. We demonstrate the ability of our system to take in a wide range of multimodal information and automatically generated a prediction score for the depression state of the individual. Our experiments showed that this approach yielded better performance than the baseline model. Furthermore, the multimodal narrative approach makes it easy to integrate learnings from other disciplines, such as conversational analysis and psychology. Lastly, this interdisciplinary and automated approach is a step towards emulating how practitioners record the course of treatment as well as emulating how conversational analysts have been analyzing conversations by hand.



قيم البحث

اقرأ أيضاً

Next generation virtual assistants are envisioned to handle multimodal inputs (e.g., vision, memories of previous interactions, in addition to the users utterances), and perform multimodal actions (e.g., displaying a route in addition to generating t he systems utterance). We introduce Situated Interactive MultiModal Conversations (SIMMC) as a new direction aimed at training agents that take multimodal actions grounded in a co-evolving multimodal input context in addition to the dialog history. We provide two SIMMC datasets totalling ~13K human-human dialogs (~169K utterances) using a multimodal Wizard-of-Oz (WoZ) setup, on two shopping domains: (a) furniture (grounded in a shared virtual environment) and, (b) fashion (grounded in an evolving set of images). We also provide logs of the items appearing in each scene, and contextual NLU and coreference annotations, using a novel and unified framework of SIMMC conversational acts for both user and assistant utterances. Finally, we present several tasks within SIMMC as objective evaluation protocols, such as Structural API Prediction and Response Generation. We benchmark a collection of existing models on these SIMMC tasks as strong baselines, and demonstrate rich multimodal conversational interactions. Our data, annotations, code, and models are publicly available.
366 - Bryan Wang , Gang Li , Xin Zhou 2021
Mobile User Interface Summarization generates succinct language descriptions of mobile screens for conveying important contents and functionalities of the screen, which can be useful for many language-based application scenarios. We present Screen2Wo rds, a novel screen summarization approach that automatically encapsulates essential information of a UI screen into a coherent language phrase. Summarizing mobile screens requires a holistic understanding of the multi-modal data of mobile UIs, including text, image, structures as well as UI semantics, motivating our multi-modal learning approach. We collected and analyzed a large-scale screen summarization dataset annotated by human workers. Our dataset contains more than 112k language summarization across $sim$22k unique UI screens. We then experimented with a set of deep models with different configurations. Our evaluation of these models with both automatic accuracy metrics and human rating shows that our approach can generate high-quality summaries for mobile screens. We demonstrate potential use cases of Screen2Words and open-source our dataset and model to lay the foundations for further bridging language and user interfaces.
278 - Alex Kale , Yifan Wu , 2021
Analysts often make visual causal inferences about possible data-generating models. However, visual analytics (VA) software tends to leave these models implicit in the mind of the analyst, which casts doubt on the statistical validity of informal vis ual insights. We formally evaluate the quality of causal inferences from visualizations by adopting causal support -- a Bayesian cognition model that learns the probability of alternative causal explanations given some data -- as a normative benchmark for causal inferences. We contribute two experiments assessing how well crowdworkers can detect (1) a treatment effect and (2) a confounding relationship. We find that chart users causal inferences tend to be insensitive to sample size such that they deviate from our normative benchmark. While interactively cross-filtering data in visualizations can improve sensitivity, on average users do not perform reliably better with common visualizations than they do with textual contingency tables. These experiments demonstrate the utility of causal support as an evaluation framework for inferences in VA and point to opportunities to make analysts mental models more explicit in VA software.
There is a growing desire to create computer systems that can communicate effectively to collaborate with humans on complex, open-ended activities. Assessing these systems presents significant challenges. We describe a framework for evaluating system s engaged in open-ended complex scenarios where evaluators do not have the luxury of comparing performance to a single right answer. This framework has been used to evaluate human-machine creative collaborations across story and music generation, interactive block building, and exploration of molecular mechanisms in cancer. These activities are fundamentally different from the more constrained tasks performed by most contemporary personal assistants as they are generally open-ended, with no single correct solution, and often no obvious completion criteria. We identified the Key Properties that must be exhibited by successful systems. From there we identified Hallmarks of success -- capabilities and features that evaluators can observe that would be indicative of progress toward achieving a Key Property. In addition to being a framework for assessment, the Key Properties and Hallmarks are intended to serve as goals in guiding research direction.
Chart question answering (CQA) is a newly proposed visual question answering (VQA) task where an algorithm must answer questions about data visualizations, e.g. bar charts, pie charts, and line graphs. CQA requires capabilities that natural-image VQA algorithms lack: fine-grained measurements, optical character recognition, and handling out-of-vocabulary words in both questions and answers. Without modifications, state-of-the-art VQA algorithms perform poorly on this task. Here, we propose a novel CQA algorithm called parallel recurrent fusion of image and language (PReFIL). PReFIL first learns bimodal embeddings by fusing question and image features and then intelligently aggregates these learned embeddings to answer the given question. Despite its simplicity, PReFIL greatly surpasses state-of-the art systems and human baselines on both the FigureQA and DVQA datasets. Additionally, we demonstrate that PReFIL can be used to reconstruct tables by asking a series of questions about a chart.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا