ﻻ يوجد ملخص باللغة العربية
Photon antibunching, a hallmark of quantum light, has been observed in the correlations of light from isolated atomic and atomic-like solid-state systems. Two-dimensional semiconductor heterostructures offer a unique method to create a quantum light source: a small lattice mismatch or relative twist in a heterobilayer can create moire trapping potentials for excitons which are predicted to create arrays of quantum emitters. While signatures of moire trapped excitons have been observed, their quantum nature has yet to be confirmed. Here we report photon antibunching from single moire trapped interlayer excitons in a heterobilayer. Via polarization resolved magneto-optical spectroscopy, we demonstrate the discrete anharmonic spectra arise from bound band-edge electron-hole pairs trapped in moire potentials. Finally, using an out-of-plane electric field, we exploit the large permanent dipole of interlayer excitons to achieve large DC Stark tuning, up to 40 meV, of the quantum emitters. Our results confirm the quantum nature of moire confined excitons and open opportunities to investigate their inhomogeneity and interactions between the emitters or tune single emitters into resonance with cavity modes or other emitters.
Van der Waals heterostructures offer attractive opportunities to design quantum materials. For instance, transition metal dichalcogenides (TMDs) possess three quantum degrees of freedom: spin, valley index, and layer index. Further, twisted TMD heter
Stacking monolayers of transition metal dichalcogenides into a heterostructure with a finite twist-angle gives rise to artificial moire superlattices with a tunable periodicity. As a consequence, excitons experience a periodic potential, which can be
The creation of moire patterns in crystalline solids is a powerful approach to manipulate their electronic properties, which are fundamentally influenced by periodic potential landscapes. In 2D materials, a moire pattern with a superlattice potential
Highly uniform and ordered nanodot arrays are crucial for high performance quantum optoelectronics including new semiconductor lasers and single photon emitters, and for synthesizing artificial lattices of interacting quasiparticles towards quantum i
Transition metal dichalcogenide heterobilayers offer attractive opportunities to realize lattices of interacting bosons with several degrees of freedom. Such heterobilayers can feature moire patterns that modulate their electronic band structure, lea