ﻻ يوجد ملخص باللغة العربية
The majority of existing few-shot learning methods describe image relations with binary labels. However, such binary relations are insufficient to teach the network complicated real-world relations, due to the lack of decision smoothness. Furthermore, current few-shot learning models capture only the similarity via relation labels, but they are not exposed to class concepts associated with objects, which is likely detrimental to the classification performance due to underutilization of the available class labels. To paraphrase, children learn the concept of tiger from a few of actual examples as well as from comparisons of tiger to other animals. Thus, we hypothesize that in fact both similarity and class concept learning must be occurring simultaneously. With these observations at hand, we study the fundamental problem of simplistic class modeling in current few-shot learning methods. We rethink the relations between class concepts, and propose a novel Absolute-relative Learning paradigm to fully take advantage of label information to refine the image representations and correct the relation understanding in both supervised and unsupervised scenarios. Our proposed paradigm improves the performance of several the state-of-the-art models on publicly available datasets.
The ability to incrementally learn new classes is crucial to the development of real-world artificial intelligence systems. In this paper, we focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem. FSCIL requires CNN
Unsupervised Domain Adaptation (UDA) transfers predictive models from a fully-labeled source domain to an unlabeled target domain. In some applications, however, it is expensive even to collect labels in the source domain, making most previous works
Few-shot learning aims to recognize new categories using very few labeled samples. Although few-shot learning has witnessed promising development in recent years, most existing methods adopt an average operation to calculate prototypes, thus limited
Metric learning is a widely used method for few shot learning in which the quality of prototypes plays a key role in the algorithm. In this paper we propose the trainable prototypes for distance measure instead of the artificial ones within the meta-
We consider the few-shot classification task with an unbalanced dataset, in which some classes have sufficient training samples while other classes only have limited training samples. Recent works have proposed to solve this task by augmenting the tr