ﻻ يوجد ملخص باللغة العربية
We theoretically study the low energy electromagnetic response of BCS type superconductors focusing on propagating collective modes that are observable with THz near field optics. The interesting frequency and momentum range is $omega < 2Delta$ and $q < 1/xi$ where $Delta$ is the gap and $xi$ is the coherence length. We show that it is possible to observe the superfluid plasmons, amplitude (Higgs) modes, Bardasis-Schrieffer modes and Carlson-Goldman modes using THz near field technique, although none of these modes couple linearly to far field radiation. Coupling of THz near field radiation to the amplitude mode requires particle-hole symmetry breaking while coupling to the Bardasis-Schrieffer mode does not and is typically stronger. For parameters appropriate to layered superconductors of current interest, the Carlson-Goldman mode appears in the near field reflection coefficient as a weak feature in the sub-THz frequency range. In a system of two superconducting layers with nanometer scale separation, an acoustic phase mode appears as the antisymmetric density fluctuation mode of the system. This mode produces well defined resonance peaks in the near-field THz response and has strong anticrossings with the Bardasis-Schrieffer and amplitude modes, enhancing their response. In a slab consisting of many layers of quasi-two dimensional superconductors, realized for example in samples of high T$_c$ cuprate compounds, many branches of propagating Josephson plasmon modes are found to couple to the THz near field radiation.
We present a theory of magnetic response in a finite-size two-dimensional superconductors with Rashba spin-orbit coupling. The interplay between the latter and an in-plane Zeeman field leads on the one hand to an out-of-plane spin polarization which
Collective modes in two dimensional topological superconductors are studied by an extended random phase approximation theory while considering the influence of vector field of light. In two situations, the s-wave superconductors without spin-orbit-co
We present a gauge-invariant density matrix description of non-equilibrium superconductor (SC) states with spatial and temporal correlations driven by intense terahertz (THz) lightwaves. We derive superconductor Bloch--Maxwell equations of motion tha
The theory of symmetry indicators has enabled database searches for topological materials in normal conducting phases, which has led to several encyclopedic topological material databases. Here, based on recently developed symmetry indicators for sup
We show that asymmetrical mesoscopic superconductors bring new insight into vortex physics where we found the remarkable coexistence of long and short vortices. We study an asymmetrical mesoscopic sphere, that lacks one of its quadrants, and obtain i