ﻻ يوجد ملخص باللغة العربية
We study $SU(N_c)$ gauge theories with Dirac fermions in representations ${cal{R}}$ of nonzero $N$-ality, coupled to axions. These theories have an exact discrete chiral symmetry, which has a mixed t Hooft anomaly with general baryon-color-flavor backgrounds, called the BCF anomaly in arXiv:1909.09027. The infrared theory also has an emergent $mathbb Z_{N_c}^{(1)}$ $1$-form center symmetry. We show that the BCF anomaly is matched in the infrared by axion domain walls. We argue that $mathbb Z_{N_c}^{(1)}$ is spontaneously broken on axion domain walls, so that nonzero $N$-ality Wilson loops obey the perimeter law and probe quarks are deconfined on the walls. We give further support to our conclusion by using a calculable small-circle compactification to study the multi-scale structure of the axion domain walls and the microscopic physics of deconfinement on their worldvolume.
We study the physics of quark deconfinement on domain walls in four-dimensional supersymmetric SU(N) Yang-Mills theory, compactified on a small circle with supersymmetric boundary conditions. We numerically examine the properties of BPS domain walls
We examine the statistical mechanics of a 1-dimensional gas of both adjoint and fundamental representation quarks which interact with each other through 1+1-dimensional U(N) gauge fields. Using large-N expansion we show that, when the density of fund
We provide evidence for partial deconfinement -- the deconfinement of a SU($M$) subgroup of the SU($N$) gauge group -- by using lattice Monte Carlo simulations. We take matrix models as concrete examples. By appropriately fixing the gauge, we observe
We study the discrete chiral- and center-symmetry t Hooft anomaly matching in the charge-$q$ two-dimensional Schwinger model. We show that the algebra of the discrete symmetry operators involves a central extension, implying the existence of $q$ vacu
We study the domain walls in hot $4$-D $SU(N)$ super Yang-Mills theory and QCD(adj), with $n_f$ Weyl flavors. We find that the $k$-wall worldvolume theory is $2$-D QCD with gauge group $SU(N-k)times SU(k) times U(1)$ and Dirac fermions charged under