ﻻ يوجد ملخص باللغة العربية
The origin, geometry and kinematics of the broad line region (BLR) gas in quasars and active galactic nuclei (AGN) are uncertain. We demonstrate that clumpy biconical disc winds illuminated by an AGN continuum can produce BLR-like spectra. We first use a simple toy model to illustrate that disc winds make quite good BLR candidates, because they are self-shielded flows and can cover a large portion of the ionizing flux-density ($phi_H$-$n_H$) plane. We then conduct Monte Carlo radiative transfer and photoionization calculations, which fully account for self-shielding and multiple scattering in a non-spherical geometry. The emergent model spectra show broad emission lines with equivalent widths and line ratios comparable to those observed in AGN, provided that the wind has a volume filling factor of $f_Vlesssim0.1$. Similar emission line spectra are produced for a variety of wind geometries (polar or equatorial) and for launch radii that differ by an order of magnitude. The line emission arises almost exclusively from plasma travelling below the escape velocity, implying that `failed winds are important BLR candidates. The behaviour of a line-emitting wind (and possibly any `smooth flow BLR model) is similar to that of the locally optimally-emitting cloud (LOC) model originally proposed by Baldwin et al (1995), except that the gradients in ionization state and temperature are large-scale and continuous, rather than within or between distinct clouds. Our models also produce UV absorption lines and X-ray absorption features, and the stratified ionization structure can partially explain the different classes of broad absorption line quasars.
We use a 380 ks XMM-Newton high-resolution RGS spectrum to look for narrow spectral features from the nuclear environment of 1H0707-495. We do not find any evidence of a line-of-sight ionized wind (warm absorber). We do, however, detect broad emissio
The SINFONI survey for Unveiling the Physics and Effect of Radiative feedback (SUPER) was designed to conduct a blind search for AGN-driven outflows on X-ray selected AGN at redshift z$sim$2 with high ($sim$2 kpc) spatial resolution, and correlate th
We present the results of the long-term optical monitoring campaign of active galactic nuclei (AGN) coordinated by the Special Astrophysical Observatory of the Russian Academy of Science. This campaign has produced a remarkable set of optical spectra
We present an analysis of the narrow Fe K-alpha line in Chandra/HETGS observations of the Seyfert AGN, NGC 4151. The sensitivity and resolution afforded by the gratings reveal asymmetry in this line. Models including weak Doppler boosting, gravitatio
A strong X-ray outburst was detected in HE1136-2304 in 2014. Accompanying optical spectra revealed that the spectral type has changed from a nearly Seyfert 2 type (1.95), classified by spectra taken 10 and 20 years ago, to a Seyfert 1.5 in our most r