Local Electric Field Measurement in GaN Diodes by exciton Franz-Keldysh Photocurrent Spectroscopy


الملخص بالإنكليزية

The eXciton Franz-Keldysh (XFK) effect is observed in GaN p-n junction diodes via the spectral variation of photocurrent responsivity data that redshift and broaden with increasing reverse bias. Photocurrent spectra are quantitatively fit over a broad photon energy range to an XFK model using only a single fit parameter that determines the lineshape, the local bias ($V_{l}$), uniquely determining the local electric field maximum and depletion widths. As expected, the spectrally determined values of $V_{l}$ vary linearly with the applied bias ($V$) and reveal a large reduction in the local electric field due to electrostatic non-uniformity. The built-in bias ($V_{bi}$) is estimated by extrapolating $V_{l}$ at $V=0$, which compared with independent C-V measurements indicates an overall $pm$0.31 V accuracy of $V_{l}$. This demonstrates sub-bandgap photocurrent spectroscopy as a local probe of electric field in wide bandgap diodes that can be used to map out regions of device breakdown (hot spots) for improving electrostatic design of high voltage devices.

تحميل البحث