Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions


الملخص بالإنكليزية

Global climate models represent small-scale processes such as clouds and convection using quasi-empirical models known as parameterizations, and these parameterizations are a leading cause of uncertainty in climate projections. A promising alternative approach is to use machine learning to build new parameterizations directly from high-resolution model output. However, parameterizations learned from three-dimensional model output have not yet been successfully used for simulations of climate. Here we use a random forest to learn a parameterization of subgrid processes from output of a three-dimensional high-resolution atmospheric model. Integrating this parameterization into the atmospheric model leads to stable simulations at coarse resolution that replicate the climate of the high-resolution simulation. The parameterization obeys physical constraints and captures important statistics such as precipitation extremes. The ability to learn from a fully three-dimensional simulation presents an opportunity for learning parameterizations from the wide range of global high-resolution simulations that are now emerging.

تحميل البحث