ﻻ يوجد ملخص باللغة العربية
We present a detailed method to simulating sensor distortions using a photon and electron Monte Carlo method. We use three dimensional electrostatic simulations to parameterize the perturbed electric field profile for non-ideal sensor details. We follow the conversion of simulated photons, and the subsequent response of the converted electrons to the electric field pattern. These non-ideal sensor details can be implemented efficiently in a Monte Carlo approach. We demonstrate that the non-ideal sensor distortions have a variety of observable consequence including the modification of the astrometric pattern, the distortion of the electron diffusion size and shape, and the distortion of flats. We show analytic validation of the diffusion physics, reproduce two kinds of edge distortion, and show qualitative validation of field-free regions, lithography errors, and fringing. We also demonstrate that there are two related effects of doping variation having different observable consequences. We show that field distortions from accumulated electrons lead to intensity-dependent point-spread-functions and the sub-linear variance in flats. The method is implemented in the Photon Simulator (PhoSim) and the code is publically available.
We develop a comprehensive approach to simulate the deformation of mirrors and lenses due to thermal and mechanical stresses that couples efficiently to photon-based optics simulations. This expands upon previous work where we demonstrated a comprehe
A crucial aspect of 3D Monte Carlo radiative transfer is the choice of the spatial grid used to partition the dusty medium. We critically investigate the use of octree grids in Monte Carlo dust radiative transfer, with two different octree constructi
Context: AGILE is a gamma-ray astrophysics mission which has been in orbit since 23 April 2007 and continues to operate reliably. The gamma-ray detector, AGILE-GRID, has observed Galactic and extragalactic sources, many of which were collected in the
We have examined the behavior of the compressibility, the dc-conductivity, the single-particle gap, and the Drude weight as probes of the density-driven metal-insulator transition in the Hubbard model on a square lattice. These quantities have been o
AGILE is a mission of the Italian Space Agency (ASI) Scientific Program dedicated to gamma-ray astrophysics, operating in a low Earth orbit since April 23, 2007. It is designed to be a very light and compact instrument, capable of simultaneously dete