ﻻ يوجد ملخص باللغة العربية
The modern understanding of topological insulators is based on Wannier obstructions in position space. Motivated by this insight, we study topological superconductors from a position-space perspective. For a one-dimensional superconductor, we show that the wave function of an individual Cooper pair decays exponentially with separation in the trivial phase and polynomially in the topological phase. For the position-space Majorana representation, we show that the topological phase is characterized by a nonzero Majorana polarization, which captures an irremovable and quantized separation of Majorana Wannier centers from the atomic positions. We apply our results to diagnose second-order topological superconducting phases in two dimensions. Our work establishes a vantage point for the generalization of Topological Quantum Chemistry to superconductivity.
Collective modes in two dimensional topological superconductors are studied by an extended random phase approximation theory while considering the influence of vector field of light. In two situations, the s-wave superconductors without spin-orbit-co
We show that a Weyl superconductor can absorb light via a novel surface-to-bulk mechanism, which we dub the topological anomalous skin effect. This occurs even in the absence of disorder for a single-band superconductor, and is facilitated by the top
We consider a superconductor with surface suppression of the BCS pairing constant $lambda(x)$. We analytically find the gap in the surface density of states (DOS), behavior of the DOS $ u(E)$ above the gap, a vertical peculiarity of the DOS around an
The symmetries of superconducting gap functions remain an important question of iron-based superconductivity. Motivated by the recent angle-resolved photoemission spectroscopic measurements on iron-chalcogenide superconductors, we investigate the inf
Topological states of matter are a source of low-energy quasiparticles, bound to a defect or propagating along the surface. In a superconductor these are Majorana fermions, described by a real rather than a complex wave function. The absence of compl