ﻻ يوجد ملخص باللغة العربية
Materials undergoing both phase separation and chemical reactions (defined here as all processes that change particle type or number) form an important class of non-equilibrium systems. Examples range from suspensions of self-propelled bacteria with birth-death dynamics, to bio-molecular condensates, or membraneless organelles, within cells. In contrast to their passive counterparts, such systems have conserved and non-conserved dynamics that do not, in general, derive from a shared free energy. This mismatch breaks time-reversal symmetry and leads to new types of dynamical competition that are absent in or near equilibrium. We construct a canonical scalar field theory to describe such systems, with conserved and non-conserved dynamics obeying Model B and Model A respectively (in the Hohenberg-Halperin classification), chosen such that the two free energies involved are incompatible. The resulting minimal model is shown to capture the various phenomenologies reported previously for more complicated models with the same physical ingredients, including microphase separation, limit cycles and droplet splitting. We find a low-dimensional subspace of parameters for which time-reversal symmetry is accidentally recovered, and show that here the dynamics of the order parameter field (but not its conserved current) is exactly the same as an equilibrium system in which microphase separation is caused by long-range attractive interactions.
Biological activity gives rise to non-equilibrium fluctuations in the cytoplasm of cells; however, there are few methods to directly measure these fluctuations. Using a reconstituted actin cytoskeleton, we show that the bending dynamics of embedded m
We report the observation of the homogenous nucleation of crystals in a dense layer of steel spheres confined between two horizontal plates vibrated vertically. Above a critical vibration amplitude, two-layer crystals with square symmetry were found
We report that binary dispersions of like-charged colloidal particles with large charge asymmetry but similar size exhibit phase separation into crystal and fluid phases under very low salt conditions. This is unexpected because the effective colloid
Non-equilibrium aspects of the BCS model have fascinated physicists for decades, from the seminal works of Eliashberg to modern realizations in cold atom experiments. The latter scenarios have lead to a great deal of interest in the quench dynamics o
The phase-separation occurring in a system of mutually interacting proteins that can bind on specific sites of a chromatin fiber is here investigated. This is achieved by means of extensive Molecular Dynamics simulations of a simple polymer model whi