ﻻ يوجد ملخص باللغة العربية
A stochastic model of autoregulated bursty gene expression by Kumar et al. [Phys. Rev. Lett. 113, 268105 (2014)] has been exactly solved in steady-state conditions under the implicit assumption that protein numbers are sufficiently large such that fluctuations in protein numbers due to reversible protein-promoter binding can be ignored. Here we derive an alternative model that takes into account these fluctuations and hence can be used to study low protein number effects. The exact steady-state protein number distributions is derived as a sum of Gaussian hypergeometric functions. We use the theory to study how promoter switching rates and the type of feedback influence the size of protein noise and noise-induced bistability. Furthermore we show that our model predictions for the protein number distribution are significantly different from those of Kumar et al. when the protein mean is small, gene switching is fast, and protein binding is faster than unbinding.
The bulk of stochastic gene expression models in the literature do not have an explicit description of the age of a cell within a generation and hence they cannot capture events such as cell division and DNA replication. Instead, many models incorpor
In the last years, tens of thousands gene expression profiles for cells of several organisms have been monitored. Gene expression is a complex transcriptional process where mRNA molecules are translated into proteins, which control most of the cell f
Gene expression data for a set of 12 localizations from The Cancer Genome Atlas are processed in order to evaluate an entropy-like magnitude allowing the characterization of tumors and comparison with the corresponding normal tissues. The comparison
Inferring functional relationships within complex networks from static snapshots of a subset of variables is a ubiquitous problem in science. For example, a key challenge of systems biology is to translate cellular heterogeneity data obtained from si
A principal component analysis of the TCGA data for 15 cancer localizations unveils the following qualitative facts about tumors: 1) The state of a tissue in gene expression space may be described by a few variables. In particular, there is a single