ترغب بنشر مسار تعليمي؟ اضغط هنا

LiftTiles: Constructive Building Blocks for Prototyping Room-scale Shape-changing Interfaces

103   0   0.0 ( 0 )
 نشر من قبل Ryo Suzuki
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-scale shape-changing interfaces have great potential, but creating such systems requires substantial time, cost, space, and efforts, which hinders the research community to explore interactions beyond the scale of human hands. We introduce modular inflatable actuators as building blocks for prototyping room-scale shape-changing interfaces. Each actuator can change its height from 15cm to 150cm, actuated and controlled by air pressure. Each unit is low-cost (8 USD), lightweight (10 kg), compact (15 cm), and robust, making it well-suited for prototyping room-scale shape transformations. Moreover, our modular and reconfigurable design allows researchers and designers to quickly construct different geometries and to explore various applications. This paper contributes to the design and implementation of highly extendable inflatable actuators, and demonstrates a range of scenarios that can leverage this modular building block.



قيم البحث

اقرأ أيضاً

Recent advances in haptic hardware and software technology have generated interest in novel, multimodal interfaces based on the sense of touch. Such interfaces have the potential to revolutionize the way we think about human computer interaction and open new possibilities for simulation and training in a variety of fields. In this paper we review several frameworks, APIs and toolkits for haptic user interface development. We explore these software components focusing on minimally invasive surgical simulation systems. In the area of medical diagnosis, there is a strong need to determine mechanical properties of biological tissue for both histological and pathological considerations. Therefore we focus on the development of affordable visuo-haptic simulators to improve practice-based education in this area. We envision such systems, designed for the next generations of learners that enhance their knowledge in connection with real-life situations while they train in mandatory safety conditions.
427 - Soheil Gholami 2021
Human factors and ergonomics are the essential constituents of teleoperation interfaces, which can significantly affect the human operators performance. Thus, a quantitative evaluation of these elements and the ability to establish reliable compariso n bases for different teleoperation interfaces are the keys to select the most suitable one for a particular application. However, most of the works on teleoperation have so far focused on the stability analysis and the transparency improvement of these systems, and do not cover the important usability aspects. In this work, we propose a foundation to build a general framework for the analysis of human factors and ergonomics in employing diverse teleoperation interfaces. The proposed framework will go beyond the traditional subjective analyses of usability by complementing it with online measurements of the human body configurations. As a result, multiple quantitative metrics such as joints usage, range of motion comfort, center of mass divergence, and posture comfort are introduced. To demonstrate the potential of the proposed framework, two different teleoperation interfaces are considered, and real-world experiments with eleven participants performing a simulated industrial remote pick-and-place task are conducted. The quantitative results of this analysis are provided, and compared with subjective questionnaires, illustrating the effectiveness of the proposed framework.
This paper aimed to explore whether human beings can understand gestures produced by telepresence robots. If it were the case, they can derive meaning conveyed in telerobotic gestures when processing spatial information. We conducted two experiments over Skype in the present study. Participants were presented with a robotic interface that had arms, which were teleoperated by an experimenter. The robot could point to virtual locations that represented certain entities. In Experiment 1, the experimenter described spatial locations of fictitious objects sequentially in two conditions: speech condition (SO, verbal descriptions clearly indicated the spatial layout) and speech and gesture condition (SR, verbal descriptions were ambiguous but accompanied by robotic pointing gestures). Participants were then asked to recall the objects spatial locations. We found that the number of spatial locations recalled in the SR condition was on par with that in the SO condition, suggesting that telerobotic pointing gestures compensated ambiguous speech during the process of spatial information. In Experiment 2, the experimenter described spatial locations non-sequentially in the SR and SO conditions. Surprisingly, the number of spatial locations recalled in the SR condition was even higher than that in the SO condition, suggesting that telerobotic pointing gestures were more powerful than speech in conveying spatial information when information was presented in an unpredictable order. The findings provide evidence that human beings are able to comprehend telerobotic gestures, and importantly, integrate these gestures with co-occurring speech. This work promotes engaging remote collaboration among humans through a robot intermediary.
The origin of strain-induced ferromagnetism, which is robust regardless of the type and degree of strain in LaCoO3 (LCO) thin films, is enigmatic despite intensive research efforts over the past decade. Here, by combining scanning transmission electr on microscopy with ab initio density functional theory plus U calculations, we report that the ferromagnetism does not emerge directly from the strain itself, but rather from the creation of compressed structural units within ferroelastically formed twin-wall domains. The compressed structural units are magnetically active with the rocksalt-type high-spin/low-spin order. Our study highlights that the ferroelastic nature of ferromagnetic structural units is important for understanding the intriguing ferromagnetic properties in LCO thin films.
The future of main memory appears to lie in the direction of new non-volatile memory technologies that provide strong capacity-to-performance ratios, but have write operations that are much more expensive than reads in terms of energy, bandwidth, and latency. This asymmetry can have a significant effect on algorithm design, and in many cases it is possible to reduce writes at the cost of reads. In this paper, we study which algorithmic techniques are useful in designing practical write-efficient algorithms. We focus on several fundamental algorithmic building blocks including unordered set/map implemented using hash tables, ordered set/map implemented using various binary search trees, comparison sort, and graph traversal algorithms including breadth-first search and Dijkstras algorithm. We introduce new algorithms and implementations that can reduce writes, and analyze the performance experimentally using a software simulator. Finally we summarize interesting lessons and directions in designing write-efficient algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا