ﻻ يوجد ملخص باللغة العربية
Neutrino-driven ejecta in core collapse supernovae (CCSNe) offer an interesting astrophysical scenario where lighter heavy elements between Sr and Ag can be synthesized. Previous studies emphasized the important role that ($alpha,n$) reactions play in the production of these elements, particularly in neutron-rich and alpha-rich environments. In this paper, we have investigated the sensitivity of elemental abundances to specific ($alpha,n$) reaction-rate uncertainties under different astrophysical conditions. Following a Monte Carlo nucleosynthesis study with over 36 representative astrophysical wind conditions, we have identified the most important reactions based on their impact on the final elemental abundances. Experimental studies of these reactions will reduce the nucleosynthesis uncertainties and make it possible to use observations to understand the origin of lighter heavy elements and the astrophysical conditions where they are formed.
We explore the appearance of light clusters at high densities of collapsing stellar cores. Special attention is paid to the unstable isotope H4, which was not included in previous studies. The importance of light clusters in the calculation of rates
The rare-earth peak in the $r$-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing
We study the optical emission from heavy element ejecta in the oxygen-rich young supernova remnant (SNR) 1E 0102.2-7219 (1E 0102) in the Small Magellanic Cloud. We have used the Multi-Unit Spectroscopic Explorer (MUSE) optical integral field spectrog
We investigate the nuclear pasta phases in neutron star crusts by conducting a large number of three-dimensional Hartree-Fock+BCS calculations at densities leading to the crust-core transition. We survey the shape parameter space of pasta at constant
The rapid-neutron-capture (r) process is responsible for synthesizing many of the heavy elements observed in both the solar system and Galactic metal-poor halo stars. Simulations of r-process nucleosynthesis can reproduce abundances derived from obse