ﻻ يوجد ملخص باللغة العربية
Semiconductor nanowire (NW) lasers are a promising technology for the realisation of coherent optical sources with extremely small footprint. To fully realize their potential as building blocks in on-chip photonic systems, scalable methods are required for dealing with large populations of inhomogeneous devices that are typically randomly distributed on host substrates. In this work two complementary, high-throughput techniques are combined: the characterisation of nanowire laser populations using automated optical microscopy, and a high accuracy transfer printing process with automatic device spatial registration and transfer. In this work a population of NW lasers is characterised, binned by threshold energy density and subsequently printed in arrays onto a secondary substrate. Statistical analysis of the transferred and control devices show that the transfer process does not incur measurable laser damage and the threshold binning can be maintained. Analysis is provided on the threshold and mode spectra of the device populations to investigate the potential for using NW lasers for integrated systems fabrication.
Background: Nanoscale composition of silk defining its unique properties via a hierarchical structural anisotropy has to be analysed at the highest spatial resolution of tens-of-nanometers corresponding to the size of fibrils made of b-sheets, which
We compare the characteristics of phase-pure MOCVD grown ZB and WZ InAs nanowire transistors in several atmospheres: air, dry pure N$_2$ and O$_2$, and N$_2$ bubbled through liquid H$_2$O and alcohols to identify whether phase-related structural/surf
An all-epitaxial approach was demonstrated to create coaxial plasmon laser structures composed of an alumi-num plasmonic metal / SiNx dielectric / InGaN quantum well shell surrounding a p-GaN nanowire core. Strong UV lumi-nescence was observed from a
A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are best s
The thermoelectric properties of a nanoscale germanium segment connected by aluminium nanowires are studied using scanning thermal microscopy. The germanium segment of 168,nm length features atomically sharp interfaces to the aluminium wires and is s