ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of metallicity on the detectability of rotational periods in solar-like stars

392   0   0.0 ( 0 )
 نشر من قبل Veronika Witzke
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate determination of stellar rotation periods is important for estimating stellar ages as well as for understanding stellar activity and evolution. While for about thirty thousand stars in the Kepler field rotation periods can be determined, there are over hundred thousand stars, especially with low photometric variability and irregular pattern of variations, for which rotational periods are unknown. Here, we investigate the effect of metallicity on the detectability of rotation periods. This is done by synthesising light curves of hypothetical stars, which are identical to our Sun, with the exception of the metallicity. These light curves are then used as an input to the period determination algorithms. We find that the success rate for recovering the rotation signal has a minimum close to the solar metallicity value. This can be explained by the compensation effect of facular and spot contributions. In addition, selecting solar-like stars with near-solar effective temperature, near solar photometric variability, and with metallicity between M/H = -0.35 and M/H = 0.35 from the Kepler sample, we analyse the fraction of stars for which rotational periods have been detected as a function of metallicity. In agreement with our theoretical estimate we found a local minimum for the detection fraction close to the solar metallicity. We further report rotation periods of 87~solar-like Kepler stars for the first time.



قيم البحث

اقرأ أيضاً

60 - P. G. Judge , R. Egeland , 2020
Recently published, precise stellar photometry of 72 Sun-like stars obtained at the Fairborn Observatory between 1993 and 2017 is used to set limits on the solar forcing of Earths atmosphere of $pm$ 4.5 W m$^{-2}$ since 1750. This compares with the + 2.2 $pm$ 1.1 W m$^{-2}$ IPCC estimate for anthropogenic forcing. Three critical assumptions are made. In decreasing order of importance they are: (a) most of the brightness variations occur within the average time-series length of $approx$17 years; (b) the Sun seen from the ecliptic behaves as an ensemble of middle-aged solar-like stars; and (c) narrow-band photometry in the Stromgren $b$ and $y$ bands are linearly proportional to the total solar irradiance. Assumption (a) can best be relaxed and tested by obtaining more photometric data of Sun-like stars, especially those already observed. Eight stars with near-solar parameters have been observed from 1999, and two since 1993. Our work reveals the importance of continuing and expanding ground-based photometry, to complement expensive solar irradiance measurements from space.
Glycine (NH2CH2COOH) is the simplest amino acid relevant for life. Its detection in the interstellar medium is key to understand the formation mechanisms of pre-biotic molecules and their subsequent delivery onto planetary systems. Glycine has extens ively been searched for toward hot molecular cores, although these studies did not yield any firm detection. In contrast to hot cores, low-mass star forming regions, and in particular their earliest stages represented by cold pre-stellar cores, may be better suited for the detection of glycine as well as more relevant for the study of pre-biotic chemistry in young Solar System analogs. We present 1D spherically symmetric radiative transfer calculations of the glycine emission expected to arise from the low-mass pre-stellar core L1544. Water vapour has recently been reported toward this core, indicating that a small fraction of the grain mantles in L1544 (~0.5%) has been injected into the gas phase. Assuming that glycine is photo-desorbed together with water in L1544, and considering a solid abundance of glycine on ices of ~1E-4 with respect to water, our calculations reveal that several glycine lines between 67 GHz and 80 GHz have peak intensities larger than 10 mK. These results show for the first time that glycine could reach detectable levels in cold objects such as L1544. This opens up the possibility to detect glycine, and other pre-biotic species, at the coldest and earliest stages in the formation of Solar-type systems with near-future instrumentation such as the Band 2 receivers of ALMA.
329 - E. Distefano 2012
We present a study on the determination of rotation periods (P) of solar-like stars from the photometric irregular time-sampling of the ESA Gaia mission, currently scheduled for launch in 2013, taking into account its dependence on ecliptic coordinat es. We examine the case of solar-twins as well as thousands of synthetic time-series of solar-like stars rotating faster than the Sun. In the case of solar twins we assume that the Gaia unfiltered photometric passband G will mimic the variability of the total solar irradiance (TSI) as measured by the VIRGO experiment. For stars rotating faster than the Sun, light-curves are simulated using synthetic spectra for the quiet atmosphere, the spots, and the faculae combined by applying semi-empirical relationships relating the level of photospheric magnetic activity to the stellar rotation and the Gaia instrumental response. The capabilities of the Deeming, Lomb-Scargle, and Phase Dispersion Minimisation methods in recovering the correct rotation periods are tested and compared. The false alarm probability (FAP) is computed using Monte Carlo simulations and compared with analytical formulae. The Gaia scanning law makes the rate of correct detection of rotation periods strongly dependent on the ecliptic latitude (beta). We find that for P ~ 1 d, the rate of correct detection increases with ecliptic latitude from 20-30 per cent at beta ~ 0{deg} to a peak of 70 per cent at beta=45{deg}, then it abruptly falls below 10 per cent at beta > 45{deg}. For P > 5 d, the rate of correct detection is quite low and for solar twins is only 5 per cent on average.
Stellar variability due to magnetic activity and flows at different spatial scales strongly impacts radial velocities. This variability is seen as oscillations, granulation, supergranulation, and meridional flows. The effect of this latter process is poorly known but could affect exoplanet detectability. We aim to quantify its amplitude when integrated over the disc and its temporal variability, first for the Sun, seen with different inclinations, and then for other solar-type stars. We used long time series of solar latitudinal meridional circulation to reconstruct its integrated contribution. We then used scaling laws from HD simulations relating the amplitude of the meridional flow variability with stellar mass and rotation rate to estimate the typical amplitude expected for other solar-type stars. We find typical rms of the order of 0.5-0.7 m/s (edge-on) and 1.2-1.7 m/s (pole-on) for the Sun, with a minimal jitter for an inclination of 45-55 deg. This is significant compared to other stellar activity contributions and is much larger than the radial-velocity signal of the Earth. The variability is strongly related to the activity cycle. Extension to other solar-type stars shows that the variability due to meridional flows is dominated by the amplitude of the cycle of those stars. The meridional flow contribution sometimes represents a high fraction of the convective blueshift inhibition signal, especially for quiet, low-mass stars. Our study shows that these meridional flows could be critical for exoplanet detection. Low inclinations are more impacted than edge-on configurations, but these latter still exhibit significant variability. Meridional flows also degrade the correlation between radial velocities due to convective blueshift inhibition and chromospheric activity indicators. This will make the correction from this signal challenging for stars with no multi-cellular patterns.
We investigate metal pollution onto the surface of low-mass population III stars (Pop. III survivors) via interstellar objects floating in the Galactic interstellar medium. Only recently, Tanikawa et al. analytically estimated how much metal should c ollide to an orbiting Pop. III survivor encouraged by the recent discovery of Oumuamua and suggested that ISOs are the most dominant contributor of metal enrichment of Pop. III survivors. When we consider a distribution of interstellar objects in the Galactic disc, Pop. III survivors orbits are significant properties to estimate the accretion rate of them though Tanikawa et al. assumed one modelled orbit. To take more realistic orbits into calculating the accretion rate, we use a high-resolution cosmological $N$-body simulation that resolves dark matter minihaloes. Pop. III survivors located at solar neighbourhood have a number of chances of ISO($> 100$ m) collisions, typically $5times10^6$ times in the last $5$ Gyr, which is one order of magnitude greater than estimated in the previous study. When we assume a power-law parameter $alpha$ of the ISO cumulative number density with size greater than $D$ as $n propto D^{-alpha}$, $0.80 , M_{odot}$ stars should be typically polluted [Fe/H]$sim -2$ for the case of $alpha=2.0$. Even in the cases of $0.70$ and $0.75 , M_{odot}$ stars, the typical surface metallicity are around [Fe/H]$=-6 sim -5$. From the presence of stars with their [Fe/H], we can constrain on the lower limit of the power $alpha$, as $alpha gtrsim 2.0$, which is consistent with $alpha$ of km-size asteroids and comets in the solar system. Furthermore, we provide six candidates as the ISO-polluted Pop. III stars in the case of $alpha sim 2.5$. Metal-poor stars so far discovered are possible to be metal-free Pop. III stars on birth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا