ﻻ يوجد ملخص باللغة العربية
Even if the concerns related to the naturalness of the electroweak scale are repressed, the Higgs mass and stability of the electroweak vacuum do not allow arbitrarily large supersymmetry breaking scale, $M_S$, in the minimal models with split or high-scale supersymmetry. We show that $M_S$ can be raised to the GUT scale if the theory below $M_S$ contains a Higgs doublet, a pair of TeV scale Higgsino and widely separated gauginos in addition to the Standard Model particles. The presence of wino and gluino below ${cal O}(100)$ TeV leads to precision unification of the gauge couplings consistent with the current limits on the proton lifetime. Wino, at this scale, renders the Higgsino as pseudo-Dirac dark matter which in turn evades the existing constraints from the direct detection experiments. Bino mass scale is required to be $gtrsim 10^{10}$ GeV to get the observed Higgs mass respecting the current limit on the charged Higgs mass. The framework predicts, $1 lesssim tanbeta lesssim 2.2$ and $tau[pto e^+, pi^0] < 7 times 10^{35}$ years, almost independent of values of the other parameters. The electroweak vacuum is found to be stable or metastable. The underlying framework provides an example of a viable sub-GUT scale theory of supersymmetric grand unified theory in which supersymmetry and unified gauge symmetry are broken at a common scale.
We explore the gauge coupling relations and the unification scale in F-theory SU(5) GUT broken down to the Standard Model by an internal U(1)Y gauge flux. We consider variants with exotic matter representations which may appear in these constructions
The recent confirmation by the Fermilab-based Muon g-2 experiment of the $(g-2)_mu$ anomaly has important implications for allowed particle spectra in softly broken supersymmetry (SUSY) models with neutralino dark matter (DM). Generally, the DM has t
The requirement of electroweak naturalness in supersymmetric (SUSY) models of particle physics necessitates light higgsinos not too far from the weak scale characterized by m(weak)~ m(W,Z,h)~100 GeV. On the other hand, LHC Higgs mass measurements and
The electroweak (EW) sector of the Minimal Supersymmetric Standard Model (MSSM) can account for a variety of experimental data. In particular, it can explain the persistent 3-4 sigma discrepancy between the experimental result for the anomalous magne
We build explicit supersymmetric unification models where grand unified gauge symmetry breaking and supersymmetry (SUSY) breaking are caused by the same sector. Besides, the SM-charged particles are also predicted by the symmetry breaking sector, and