ﻻ يوجد ملخص باللغة العربية
3D point cloud semantic and instance segmentation is crucial and fundamental for 3D scene understanding. Due to the complex structure, point sets are distributed off balance and diversely, which appears as both category imbalance and pattern imbalance. As a result, deep networks can easily forget the non-dominant cases during the learning process, resulting in unsatisfactory performance. Although re-weighting can reduce the influence of the well-classified examples, they cannot handle the non-dominant patterns during the dynamic training. In this paper, we propose a memory-augmented network to learn and memorize the representative prototypes that cover diverse samples universally. Specifically, a memory module is introduced to alleviate the forgetting issue by recording the patterns seen in mini-batch training. The learned memory items consistently reflect the interpretable and meaningful information for both dominant and non-dominant categories and cases. The distorted observations and rare cases can thus be augmented by retrieving the stored prototypes, leading to better performances and generalization. Exhaustive experiments on the benchmarks, i.e. S3DIS and ScanNetV2, reflect the superiority of our method on both effectiveness and efficiency. Not only the overall accuracy but also nondominant classes have improved substantially.
We propose an approach to instance segmentation from 3D point clouds based on dynamic convolution. This enables it to adapt, at inference, to varying feature and object scales. Doing so avoids some pitfalls of bottom up approaches, including a depend
Most existing point cloud instance and semantic segmentation methods rely heavily on strong supervision signals, which require point-level labels for every point in the scene. However, such strong supervision suffers from large annotation costs, arou
We develop a novel learning scheme named Self-Prediction for 3D instance and semantic segmentation of point clouds. Distinct from most existing methods that focus on designing convolutional operators, our method designs a new learning scheme to enhan
This paper investigates the indistinguishable points (difficult to predict label) in semantic segmentation for large-scale 3D point clouds. The indistinguishable points consist of those located in complex boundary, points with similar local textures
We propose a novel, conceptually simple and general framework for instance segmentation on 3D point clouds. Our method, called 3D-BoNet, follows the simple design philosophy of per-point multilayer perceptrons (MLPs). The framework directly regresses