ﻻ يوجد ملخص باللغة العربية
Diversity is a concept relevant to numerous domains of research varying from ecology, to information theory, and to economics, to cite a few. It is a notion that is steadily gaining attention in the information retrieval, network analysis, and artificial neural networks communities. While the use of diversity measures in network-structured data counts a growing number of applications, no clear and comprehensive description is available for the different ways in which diversities can be measured. In this article, we develop a formal framework for the application of a large family of diversity measures to heterogeneous information networks (HINs), a flexible, widely-used network data formalism. This extends the application of diversity measures, from systems of classifications and apportionments, to more complex relations that can be better modeled by networks. In doing so, we not only provide an effective organization of multiple practices from different domains, but also unearth new observables in systems modeled by heterogeneous information networks. We illustrate the pertinence of our approach by developing different applications related to various domains concerned by both diversity and networks. In particular, we illustrate the usefulness of these new proposed observables in the domains of recommender systems and social media studies, among other fields.
Most Fairness in AI research focuses on exposing biases in AI systems. A broader lens on fairness reveals that AI can serve a greater aspiration: rooting out societal inequities from their source. Specifically, we focus on inequities in health inform
Recently, much attention has been paid to the societal impact of AI, especially concerns regarding its fairness. A growing body of research has identified unfair AI systems and proposed methods to debias them, yet many challenges remain. Representati
Many real world systems need to operate on heterogeneous information networks that consist of numerous interacting components of different types. Examples include systems that perform data analysis on biological information networks; social networks;
Imagine a food recommender system -- how would we check if it is emph{causing} and fostering unhealthy eating habits or merely reflecting users interests? How much of a users experience over time with a recommender is caused by the recommender system
The interaction patterns of employees in social and professional networks play an important role in the success of employees and organizations as a whole. However, in many fields there is a severe under-representation of minority groups; moreover, mi