ﻻ يوجد ملخص باللغة العربية
Since it is possible to form laser pulses with a frequency much larger than the frequency of visible light, Prof. T.Tajima proposed using such pulse to accelerate the particles at its injection into the crystal. Here, the wakefield excitation in the metallic-density plasma and the electron acceleration by laser pulse are simulated. The accelerating gradient has been ob-tained approximately 3TV/m. It is shown that, as in ordinary plasma, with time beam-plasma wakefield acceleration is added to laser wakefield acceleration.
In a laser plasma accelerator (LPA), a short and intense laser pulse propagating in a plasma drives a wakefield (a plasma wave with a relativistic phase velocity) that can sustain extremely large electric fields, enabling compact accelerating structu
The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron be
We present a novel electron injection scheme for plasma wakefield acceleration. The method is based on recently proposed technique of fast electron generation via laser-solid interaction: a femtosecond laser pulse with the energy of tens of mJ hittin
Dynamics of self-injected electron bunches has been numerically simulated in blowout regime at self-consistent change of electron bunch acceleration by plasma wakefield, excited by a laser pulse, to additional their acceleration by wakefield, excited
We propose a new method for self-injection of high-quality electron bunches in the plasma wakefield structure in the blowout regime utilizing a flying focus produced by a drive-beam with an energy-chirp. In a flying focus the speed of the density cen