ﻻ يوجد ملخص باللغة العربية
For any smooth domain $Omegasubset mathbb{R}^3$, we establish the existence of a global weak solution $(mathbf{u},mathbf{d}, theta)$ to the simplified, non-isothermal Ericksen-Leslie system modeling the hydrodynamic motion of nematic liquid crystals with variable temperature for any initial and boundary data $(mathbf{u}_0, mathbf{d}_0, theta_0)inmathbf{H}times H^1(Omega, mathbb{S}^2)times L^1(Omega)$, with $ mathbf{d}_0(Omega)subsetmathbb{S}_+^2$ (the upper half sphere) and $displaystyleinf_Omega theta_0>0$.
We construct global weak solutions to isothermal quantum Navier-Stokes equations, with or without Korteweg term, in the whole space of dimension at most three. Instead of working on the initial set of unknown functions, we consider an equivalent refo
For any bounded, smooth domain $Omegasubset R^2$, %(or $Omega=R^2$), we will establish the weak compactness property of solutions to the simplified Ericksen-Leslie system for both uniaxial and biaxial nematics, and the convergence of weak solutions o
Liquid crystal droplets are of great interest from physics and applications. Rigorous mathematical analysis is challenging as the problem involves harmonic maps (and in general the Oseen-Frank model), free interfaces and topological defects which cou
In this paper, we will establish the global existence of a suitable weak solution to the Erickson--Leslie system modeling hydrodynamics of nematic liquid crystal flows with kinematic transports for molecules of various shapes in ${mathbb{R}^3}$, whic
In this paper, we study the Cauchy problem of the Poiseuille flow of full Ericksen-Leslie model for nematic liquid crystals. The model is a coupled system of a parabolic equation for the velocity and a quasilinear wave equation for the director. For