ترغب بنشر مسار تعليمي؟ اضغط هنا

The spin rates of O stars in WR + O Magellanic Cloud binaries

57   0   0.0 ( 0 )
 نشر من قبل Michael Shara
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Some massive, merging black holes (BH) may be descendants of binary O stars. The evolution and mass transfer between these O stars determines the spins of their progeny BH. These will be measurable with future gravitational wave detectors, incentivizing the measurement of the spins of O stars in binaries. We previously measured the spins of O stars in Galactic Wolf-Rayet (WR) + O binaries. Here we measure the vsini of four LMC and two SMC O stars in WR + O binaries to determine whether lower metallicity might affect the spin rates. We find that the O stars in Galactic and Magellanic WR + O binaries display average vsini = 258 +/- 18 km/s and 270 +/- 15 km/s, respectively. Two LMC O stars measured on successive nights show significant line width variability, possibly due to differing orbital phases exhibiting different parts of the O stars illuminated differently by their WR companions. Despite this variability, the vsini are highly super-synchronous but distinctly subcritical for the O stars in all these binaries; thus we conclude that an efficient mechanism for shedding angular momentum from O stars in WR + O binaries must exist. This mechanism, probably related to Roche lobe overflow-created dynamo magnetic fields, prevents nearly 100% breakup spin rates, as expected when RLOF operates, as it must, in these stars. A Spruit-Tayler dynamo and O star wind might be that mechanism.



قيم البحث

اقرأ أيضاً

128 - K. Sen , X.-T. Xu (1 2021
In the Milky Way, $sim$18 Wolf-Rayet+O (WR+O) binaries are known with estimates of their stellar and orbital parameters. Whereas black hole+O (BH+O) binaries are thought to evolve from the former, only one such system is known in the Milky Way. To re solve this disparity, it was suggested that upon core collapse, the WR stars receive large kicks such that most of the binaries are disrupted. We reassess this issue, with emphasis on the uncertainty in the formation of an accretion disk around wind-accreting BHs in BH+O binaries, which is key to identifying such systems. We follow the methodology of previous work and apply an improved analytic criterion for the formation of an accretion disk around wind accreting BHs. We then use stellar models to predict the properties of the BH+O binaries which are expected to descend from the observed WR+O binaries, if the WR stars would form BHs without a natal kick. We find that disk formation depends sensitively on the O stars wind velocity, the specific angular momentum carried by the wind, the efficiency of angular momentum accretion by the BH, and the spin of the BH. We show that the assumption of a low wind velocity may lead to predicting that most of the BH+O star binaries will have an extended X-ray bright period. However, this is not the case when typical wind velocities of O stars are considered. We find that a high spin of the BH can boost the duration of the X-ray active phase as well as the X-ray brightness during this phase, producing a strong bias for detecting high mass BH binaries in X-rays with high BH spin parameters. We conclude that large BH formation kicks are not required to understand the sparsity of X-ray bright BH+O stars in the Milky Way. Probing for a population of X-ray silent BH+O systems with alternative methods can inform us about BH kicks and the conditions for high energy emission from high mass BH binaries. (Abridged)
The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are however found in multiple systems. By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary sub-populations with one another as well as with that of presumed single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the massive stars spin rates. We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (vrot) for components of 114 spectroscopic binaries in 30 Doradus. The vrot values are derived from the full-width at half-maximum (FWHM) of a set of spectral lines, using a FWHM vs. vrot calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. The overall vrot distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at $vrot < 200$ kms) and a shoulder at intermediate velocities ($200 < vrot < 300$ kms). The distributions of binaries and single stars however differ in two ways. First, the main peak at $vrot sim$100 kms is broader and slightly shifted toward higher spin rates in the binary distribution compared to that of the presumed-single stars. Second, the vrot distribution of primaries lacks a significant population of stars spinning faster than 300 kms while such a population is clearly present in the single star sample.
We present new spectropolarimetric data for WR 42 collected over 6 months at the 11-m Southern African Large Telescope (SALT) using the Robert Stobie Spectrograph.
GALANTE is an optical photometric survey with seven intermediate/narrow filters that has been covering the Galactic Plane since 2016 using the Javalambre T80 and Cerro Tololo T80S telescopes. The P.I.s of the northern part (GALANTE NORTE) are Emilio J. Alfaro and Jesus Maiz Apellaniz. and the P.I. of the southern part (GALANTE SUR) is Rodolfo H. Barba. The detector has a continuous 1.4 degr x 1.4 degr field of view with a sampling of 0.55/pixel and the seven filters are optimized to detect obscured early-type stars. The survey includes long, intermediate, short, and ultrashort exposure times to reach a dynamical range close to 20 magnitudes, something never achieved for such an optical project before. The characteristics of GALANTE allow for a new type of calibration scheme using external Gaia, Tycho-2, and 2MASS data that has already led to a reanalysis of the sensitivity of the Gaia G filter. We describe the project and present some early results. GALANTE will identify the majority of the early-type massive stars within several kpc of the Sun and measure their amount and type of extinction. It will also map the Halpha nebular emission, identify emission-line stars, and do other studies of low- and intermediate-mass stars.
310 - H. Klus , W.C.G. Ho , M.J. Coe 2013
We report on the long-term average spin period, rate of change of spin period and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the Small Magellanic Cloud. We also collect and calculate parameters of each system and use these da ta to determine that all systems contain a neutron star which is accreting via a disc, rather than a wind, and that if these neutron stars are near spin equilibrium, then over half of them, including all with spin periods over about 100 s, have magnetic fields over the quantum critical level of 4.4x10^13 G. If these neutron stars are not close to spin equilibrium, then their magnetic fields are inferred to be much lower, of the order of 10^6-10^10 G, comparable to the fields of neutron stars in low-mass X-ray binaries. Both results are unexpected and have implications for the rate of magnetic field decay and the isolated neutron star population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا