ﻻ يوجد ملخص باللغة العربية
We employ spherical $t$-designs for the systematic construction of solids whose rotational degrees of freedom can be made robust to decoherence due to external fluctuating fields while simultaneously retaining their sensitivity to signals of interest. Specifically, the ratio of signal phase accumulation rate from a nearby source to the decoherence rate caused by fluctuating fields from more distant sources can be incremented to any desired level by using increasingly complex shapes. This allows for the generation of long-lived macroscopic quantum superpositions of rotational degrees of freedom and the robust generation of entanglement between two or more such solids with applications in robust quantum sensing and precision metrology as well as quantum registers.
I obtain the quantum correction $Delta V_mathrm{eff}= (hbar^2/8m) [(1- 4xi frac{d+1}{d})(mathcal{S})^2 + 2(1-4xi)mathcal{S}]$ that appears in the effective potential whenever a compact $d$-dimensional subspace (of volume $propto exp[mathcal{S}(x)]$)
Euler angles determining rotations of a system as a whole are conveniently separated in three-particle basis functions. Analytic integration of matrix elements over Euler angles is done in a general form. Results for the Euler angle integrated matrix
We give a brief review of some generalized continuum theories applied to the crystals with complicated microscopic structure. Three different ways of generalization of the classical elasticity theory are discussed. One is the high-gradient theory, an
Whenever variables $phi=(phi^1,phi^2,ldots)$ are discarded from a system, and the discarded information capacity $mathcal{S}(x)$ depends on the value of an observable $x$, a quantum correction $Delta V_mathrm{eff}(x)$ appears in the effective potenti
A central theme in quantum information science is to coherently control an increasing number of quantum particles as well as their internal and external degrees of freedom (DoFs), meanwhile maintaining a high level of coherence. The ability to create