ترغب بنشر مسار تعليمي؟ اضغط هنا

Actions of Cremona groups on CAT(0) cube complexes

89   0   0.0 ( 0 )
 نشر من قبل Christian Urech
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For each d we construct CAT(0) cube complexes on which Cremona groups rank d act by isometries. From these actions we deduce new and old group theoretical and dynamical results about Cremona groups. In particular, we study the dynamical behaviour of the irreducible components of exceptional loci, we prove regularization theorems, we find new constraints on the degree growth for non-regularizable birational transformations, and we show that the centralizer of certain birational transformations is small.



قيم البحث

اقرأ أيضاً

170 - Nir Lazarovich 2014
We provide a necessary and sufficient condition on a finite flag simplicial complex, L, for which there exists a unique CAT(0) cube complex whose vertex links are all isomorphic to L. We then find new examples of such CAT(0) cube complexes and prove that their automorphism groups are virtually simple. The latter uses a result, which we prove in the appendix, about the simplicity of certain subgroups of the automorphism group of a rank-one CAT(0) cube complex. This result generalizes previous results by Tits and by Haglund and Paulin.
299 - Aditi Kar , Michah Sageev 2015
Let $G$ be a group acting properly and essentially on an irreducible, non-Euclidean finite dimensional CAT(0) cube complex $X$ without fixed points at infinity. We show that for any finite collection of simultaneously inessential subgroups ${H_1, ldo ts, H_k}$ in $G$, there exists an element $g$ of infinite order such that $forall i$, $langle H_i, grangle cong H_i * langle grangle$. We apply this to show that any group, acting faithfully and geometrically on a non-Euclidean possibly reducible CAT(0) cube complex, has property $P_{naive}$ i.e. given any finite list ${g_1, ldots, g_k}$ of elements from $G$, there exists $g$ of infinite order such that $forall i$, $langle g_i, grangle cong langle g_i rangle *langle grangle$. This applies in particular to the Burger-Moses simple groups that arise as lattices in products of trees. The arguments utilize the action of the group on its Poisson boundary and moreover, allow us to summarise equivalent conditions for the reduced $C^*$-algebra of the group to be simple.
We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generali zes the work of Kar and Sageev considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that non-virtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth.
We show that if a group automorphism of a Cremona group of arbitrary rank is also a homeomorphism with respect to either the Zariski or the Euclidean topology, then it is inner up to a field automorphism of the base-field. Moreover, we show that a si milar result holds if we consider groups of polynomial automorphisms of affine spaces instead of Cremona groups.
We prove that any group acting essentially without a fixed point at infinity on an irreducible finite-dimensional CAT(0) cube complex contains a rank one isometry. This implies that the Rank Rigidity Conjecture holds for CAT(0) cube complexes. We der ive a number of other consequences for CAT(0) cube complexes, including a purely geometric proof of the Tits Alternative, an existence result for regular elements in (possibly non-uniform) lattices acting on cube complexes, and a characterization of products of trees in terms of bounded cohomology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا