Hierarchy of energy scales in an O(3) symmetric antiferromagnetic quantum critical metal: a Monte Carlo study


الملخص بالإنكليزية

We present numerically exact results from sign-problem free quantum Monte Carlo simulations for a spin-fermion model near an $O(3)$ symmetric antiferromagnetic (AFM) quantum critical point. We find a hierarchy of energy scales that emerges near the quantum critical point. At high energy scales, there is a broad regime characterized by Landau-damped order parameter dynamics with dynamical critical exponent $z=2$, while the fermionic excitations remain coherent. The quantum critical magnetic fluctuations are well described by Hertz-Millis theory, except for a $T^{-2}$ divergence of the static AFM susceptibility. This regime persists down to a lower energy scale, where the fermions become overdamped and concomitantly, a transition into a $d-$wave superconducting state occurs. These findings resemble earlier results for a spin-fermion model with easy-plane AFM fluctuations of an $O(2)$ SDW order parameter, despite noticeable differences in the perturbative structure of the two theories. In the $O(3)$ case, perturbative corrections to the spin-fermion vertex are expected to dominate at an additional energy scale, below which the $z=2$ behavior breaks down, leading to a novel $z=1$ fixed point with emergent local nesting at the hot spots [Schlief et al., PRX 7, 021010 (2017)]. Motivated by this prediction, we also consider a variant of the model where the hot spots are nearly locally nested. Within the available temperature range in our study ($Tge E_F/200$), we find substantial deviations from the $z=2$ Hertz-Millis behavior, but no evidence for the predicted $z=1$ criticality.

تحميل البحث