ﻻ يوجد ملخص باللغة العربية
Second-order processes in physics is a research topic focusing attention from several fields worldwide including, for example, non-linear quantum electrodynamics with high-power lasers, neutrinoless double-$beta$ decay, and stimulated atomic two-photon transitions. For the electromagnetic nuclear interaction, the observation of the competitive double-$gamma$ decay from $^{137mathrm{m}}$Ba has opened up the nuclear structure field for detailed investigation of second-order processes through the manifestation of off-diagonal nuclear polarizability. Here we confirm this observation with an $8.7sigma$ significance, and an improved value on the double-photon versus single-photon branching ratio as $2.62times10^{-6}(30)$. Our results, however, contradict the conclusions from the original experiment, where the decay was interpreted to be dominated by a quadrupole-quadrupole component. Here, we find a substantial enhancement in the energy distribution consistent with a dominating octupole-dipole character and a rather small quadrupole-quadrupole element in the decay, hindered due to an evolution of the internal nuclear structure. The implied strongly hindered double-photon branching in $^{137mathrm{m}}$Ba opens up the possibility of the double-photon branching as a feasible tool for nuclear-structure studies on off-diagonal polarizability in nuclei where this hindrance is not present.
Electromagnetic transitions from deformed structures based on $alpha$ configurations or on heavier clusters are discussed, drawing the link between multiparticle-multihole excited bands and cluster structures. Enhanced E2 and E1 transitions are revie
We used a high-resolution magnetic spectrograph to study neutron pair-correlated $0^+$ states in $^{136}$Ba, produced via the $^{138}{rm Ba}(p,t)$ reaction. In conjunction with state-of-the-art shell model calculations, these data benchmark part of t
The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn with the (a,ag) coincidence method at E=136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structu
Background: Models to calculate small isospin-symmetry-breaking effects in superallowed Fermi decays have been placed under scrutiny in recent years. A stringent test of these models is to measure transitions for which the correction is predicted to
The change in the configuration of valence protons between the initial and final states in the neutrinoless double-$beta$ decay of $^{130}$Te $rightarrow$ $^{130}$Xe and of $^{136}$Xe $rightarrow$ $^{136}$Ba has been determined by measuring the cross