ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino mass, leptogenesis and sterile neutrino dark matter in inverse seesaw framework

123   0   0.0 ( 0 )
 نشر من قبل Nayana Gautam
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study $S_{4}$ flavor symmetric inverse seesaw model which has the possibility of simultaneously addressing neutrino phenomenology, dark matter (DM) and baryon asymmetry of the universe (BAU) through leptogenesis. The model is the extension of the standard model by the addition of two right handed neutrinos and three sterile fermions leading to a keV scale sterile neutrino dark matter and two pairs of quasi-Dirac states. The CP violating decay of the lightest quasi- Dirac pair present in the model generates lepton asymmetry which then converts to baryon asymmetry of the universe. Thus this model can provide a simultaneous solution for non zero neutrino mass, dark matter content of the universes and the observed baryon asymmetry. The $S_{4}$ flavor symmetry in this model is augmented by additional $Z_{4}times Z_{3}$ symmetry to constrain the Yukawa Lagrangian. A detailed numerical analysis has been carried out to obtain dark matter mass, DM-active mixing as well as BAU both for normal hierarchy as well as inverted hierarchy. We have tried to correlate the two cosmological observables and found a common parameter space satisfying the DM phenomenology and BAU. The parameter space of the model is further constrained from the latest cosmological bounds on the above mentioned observables.



قيم البحث

اقرأ أيضاً

In the Minimal Supersymmetric Standard Model (MSSM), the scalar neutrino $tilde{ u}_L$ has odd R parity, yet it has long been eliminated as a dark-matter candidate because it scatters elastically off nuclei through the $Z$ boson, yielding a cross sec tion many orders of magnitude above the experimental limit. We show how it can be reinstated as a dark-matter candidate by splitting the masses of its real and imaginary parts in an extension of the MSSM with scalar triplets. As a result, radiative Majorana neutrino masses are also generated. In addition, decays of the scalar triplets relate the abundance of this asymmetric dark matter to the baryon asymmetry of the Universe through leptogenesis.
We review sterile neutrinos as possible Dark Matter candidates. After a short summary on the role of neutrinos in cosmology and particle physics, we give a comprehensive overview of the current status of the research on sterile neutrino Dark Matter. First we discuss the motivation and limits obtained through astrophysical observations. Second, we review different mechanisms of how sterile neutrino Dark Matter could have been produced in the early universe. Finally, we outline a selection of future laboratory searches for keV-scale sterile neutrinos, highlighting their experimental challenges and discovery potential.
We study a class of general U$(1)^prime$ models to explain the observed dark matter relic abundance and light neutrino masses. The model contains three right handed neutrinos and three gauge singlet Majorana fermions to generate the light neutrino ma ss via the inverse seesaw mechanism. We assign one pair of degenerate sterile neutrinos to be the dark matter candidate whose relic density is generated by the freeze-in mechanism. We consider different regimes of the masses of the dark matter particle and the ${Z^prime}$ gauge boson. The production of the dark matter can occur at different reheating temperatures in various scenarios depending on the masses of the ${Z^prime}$ boson and the dark matter candidate. We also note that if the mass of the sterile neutrino dark matter is $gtrsim 1 rm{MeV}$ and if the $Z^prime$ is heavier than the dark matter, the decay of the dark matter candidate into positrons can explain the long standing puzzle of the galactic $511rm{keV}$ line in the Milky Way center observed by the INTEGRAL satellite. We constrain the model parameters from the dark matter analysis, vacuum stability and the collider searches of heavy ${Z^prime}$ at the LHC. For the case with light $Z^prime$, we also compare how far the parameter space allowed from dark matter relic density can be probed by the future lifetime frontier experiments SHiP and FASERs in the special case of $U(1)_{B-L}$ model.
Extending the Standard Model with three right-handed neutrinos and a simple QCD axion sector can account for neutrino oscillations, dark matter and baryon asymmetry; at the same time, it solves the strong CP problem, stabilizes the electroweak vacuum and can implement critical Higgs inflation (satisfying all current observational bounds). We perform here a general analysis of dark matter (DM) in such a model, which we call the $a u$MSM. Although critical Higgs inflation features a (quasi) inflection point of the inflaton potential we show that DM cannot receive a contribution from primordial black holes in the $a u$MSM. This leads to a multicomponent axion-sterile-neutrino DM and allows us to relate the axion parameters, such as the axion decay constant, to the neutrino parameters. We include several DM production mechanisms: the axion production via misalignment and decay of topological defects as well as the sterile-neutrino production through the resonant and non-resonant mechanisms and in the recently proposed CPT-symmetric universe.
We discuss gauge coupling unification of the SM descending directly from SO(10) while providing solutions to the three outstanding problems: neutrino masses, dark matter, and the baryon asymmetry of the universe. Conservation of matter parity as gaug ed discrete symmetry in the model calls for high-scale spontaneous symmetry breaking through ${126}_H$ Higgs representation. This naturally leads to the hybrid seesaw formula for neutrino masses mediated by heavy scalar triplet and right-handed neutrinos. The seesaw formula predicts two distinct patterns of RH$ u$ masses, one hierarchical and another not so hierarchical (or compact) when fitted with the neutrino oscillation data. Predictions of the baryon asymmetry via leptogenesis are investigated through the decays of both the patterns of RH$ u$ masses. A complete flavor analysis has been carried out to compute CP-asymmetries and solutions to Boltzmann equations have been utilized to predict the baryon asymmetry. The additional contribution to vertex correction mediated by the heavy left-handed triplet scalar is noted to contribute as dominantly as other Feynman diagrams. We have found successful predictions of the baryon asymmetry for both the patterns of RH$ u$ masses. The triplet fermionic dark matter at the TeV scale carrying even matter parity is naturally embedded into the non-standard fermionic representation ${45}_F$ of SO(10). In addition to the triplet scalar and the triplet fermion, the model needs a nonstandard color octet fermion of mass $sim 10^7$ GeV to achieve precision gauge coupling unification. Threshold corrections due to superheavy components of ${126}_H$ and other representations are estimated and found to be substantial. It is noted that the proton life time predicted by the model is accessible to the ongoing and planned experiments over a wide range of parameter space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا